A R T I C L E S
Ben´ıtez et al.
Scheme 1. Three-step Deposition Procedure for the Formation of
Films of 1 (The Film Is Present on Both Sides of the Slide)
In this study, we take advantage of a well-understood surface
modification process24-30 to compare the activity of a monolayer
film of a surface-confined manganese porphyrin oxidation
catalyst with its homogeneous behavior. Through careful
molecular design and controlled deposition, monolayers with
known surface coverage, molecular orientation, and mode of
binding to the interface are obtained. Using this controlled
surface for the example of alkene epoxidation, we have observed
increased activity with the surface-confined catalyst relative to
homogeneous reactions under the same conditions. In contrast
to many supported catalysts, all of the catalytic complexes
present in the monolayer films are fully accessible, thus allowing
accurate determination of the ratio of active site to substrate
that is necessary to evaluate the effect of immobilization on
catalytic activity. The monolayer films also allow careful
monitoring of the state of the catalyst during the course of the
reaction so that different behavior of the homogeneous and
supported systems can be quantified. In addition to providing
insight into the specific example of immobilized manganese
porphyrins, the results demonstrate the utility of studying well-
characterized molecular monolayers as models for supported
molecular catalyst systems.
Methods for immobilizing metalloporphyrins in monolayer
films frequently involve coordination bonds to the axial sites
on the metal center.31,32 However, under the conditions needed
to catalyze organic transformations, a covalent linkage through
the macrocycle ligand is preferred to free up the metal center
to participate in the reaction and to guard against desorption
that may result from labile coordination bonds. Our method of
preparing monolayers of covalently confined molecules has been
described previously, and is based on zirconium phosphonate
linkages in combination with Langmuir-Blodgett and “self-
assembled monolayer” adsorption.24-30 It involves the initial
formation a Langmuir-Blodgett monolayer of octadecylphos-
phonic acid (ODPA) on a hydrophobic support that after
adsorption of a layer of Zr4+ ions provides a well-defined surface
for the subsequent deposition of molecules containing phos-
phonic acid groups (Scheme 1).24,25 The thin films are modeled
after layered solid-state metal phosphonates, where organic
layers separate continuous inorganic layers.33-39 The practice
of sequential adsorption of organophosphonates and tetravalent
metal ions has frequently been used to build-up multilayered
films.38-42 However, the present study employs a single
deposition cycle to afford a controlled monolayer. Films formed
in this way are stable to solvents and reaction conditions
commonly used for many organic transformations,30 making it
possible to use them in studies of supported catalysis.
Manganese 5,10,15,20-tetrakis(tetrafluorophenyl-4′-octade-
cyloxyphosphonic acid) porphyrin, 1, was prepared for this
study. The fluorinated tetraphenylporphyrin has four alkylphos-
phonic acid arms intended for binding and orienting the
porphyrin at the surface. Previous studies on the Pd2+ 29 and
free-base analogues43 of 1 have shown that the ligand structure
indeed leads to monolayer coverage with the porphyrin mac-
rocycle oriented parallel to the surface. Another important
feature is that the molecules do not aggregate on the sur-
face.29 The phosphonate groups bind strongly to the zirconated
LB layer to reach a high surface coverage of noninteracting
molecules.
Natural metalloporphyrins are known oxidation catalysts, and
there has been a great deal of investigation of synthetic
analogues44-55 since the early reports that an iron porphyrin
(24) Byrd, H.; Pike, J. K.; Talham, D. R. Chem. Mater. 1993, 5, 709.
(25) Byrd, H.; Whipps, S.; Pike, J. K.; Ma, J.; Nagler, S. E.; Talham, D. R. J.
Am. Chem. Soc. 1994, 116, 295.
(26) Fanucci, G. E.; Seip, C. T.; Petruska, M. A.; Ravaine, S.; Nixon, C. M.;
Talham, D. R. Thin Solid Films 1998, 327-329, 331.
(27) Petruska, M. A.; Fanucci, G. E.; Talham, D. R. Chem. Mater. 1998, 10,
177.
(40) Katz, H. E. Chem. Mater. 1994, 6, 2227.
(41) Obrien, J. T.; Zeppenfeld, A. C.; Richmond, G. L.; Page, C. J. Langmuir
1994, 10, 4657.
(28) Petruska, M. A.; Fanucci, G. E.; Talham, D. R. Thin Solid Films 1998,
329, 131.
(42) Neff, G. A.; Helfrich, M. R.; Clifton, M. C.; Page, C. J. Chem. Mater.
2000, 12, 2393.
(43) Lee, C. M. N. Ph.D. Thesis, University of Florida: Gainesville, 2000.
(44) Groves, J. T.; Nemo, T. E.; Myers, R. S. J. Am. Chem. Soc. 1979, 101,
1033.
(45) Tabushi, I.; Koga, N. Tetrahedron Lett. 1979, 3681.
(46) Chang, C. K.; Ebina, F. J. Chem. Soc., Chem. Commun. 1981, 778.
(47) Mansuy, D.; Battioni, P.; Renaud, J. P. J. Chem. Soc., Chem. Commun.
1984, 1255.
(48) Traylor, P. S.; Dolphin, D.; Traylor, T. G. J. Chem. Soc., Chem. Commun.
1984, 253.
(49) Renaud, J.-P.; Battioni, P.; Bartoli, J. F.; Mansuy, D. J. Chem. Soc., Chem.
Commun. 1985, 888.
(50) De Poorter, B.; Ricci, M.; Meunier, B. Tetrahedron Lett. 1985, 26, 4459.
(51) De Poorter, B.; Meunier, B. J. Chem. Soc., Perkin Trans. 2 1985, 1735.
(52) Traylor, T. G.; Tsuchiya, S. Inorg. Chem. 1987, 26, 1338.
(53) Collman, J. P.; Zhang, X.; Hembre, R. T.; Brauman, J. I. J. Am. Chem.
Soc. 1990, 112, 5356.
(54) Lyons, L. E.; Ellis, E.; Myers, H. K. J. Catal. 1995, 155.
(55) Porhiel, E.; Bondon, A.; Leroy, J. Eur. J. Inorg. Chem. 2000, 1097.
(29) Nixon, C. M.; Claire, K. L.; Odobel, F.; Bujoli, B.; Talham, D. R. Chem.
Mater. 1999, 11, 965.
(30) Petruska, M. A., Talham, D. R. Langmuir 2000, 16, 5123.
(31) Collman, J. P.; Ennis, M. S.; Offord, D. A.; Chng, L. L.; Griffin, J. H.
Inorg. Chem. 1996, 35, 1751.
(32) Ashkenasy, G.; Kalyuzhny, G.; Libman, J.; Rubinstein, I.; Shanzer, A.
Angew. Chem., Int. Ed. 1999, 38, 1257.
(33) Cao, G.; Lee, H.; Lynch, V. M.; Mallouk, T. E. Inorg. Chem. 1988, 27,
2781.
(34) Bujoli, B.; Palvadeau, P.; Rouxel, J. Chem. Mater. 1990, 2, 582.
(35) Wang, R.-C.; Zhang, Y.; Hu, H.; Frausto, R. R.; Clearfield, A. Chem. Mater.
1992, 4, 864.
(36) Bujoli, B.; Pena, O.; Palvadeau, P.; Le Bideau, J.; Payen, C.; Rouxel, J.
Chem. Mater. 1993, 5, 583.
(37) Poojary, M. D.; Hu, H.-L.; Campbell, I., F. L.; Clearfield, A. Acta
Crystallogr. B 1993, 49, 996.
(38) Cao, G.; Hong, H.-G.; Mallouk, T. E. Acc. Chem. Res. 1992, 25, 420.
(39) Thompson, M. E. Chem. Mater. 1994, 6, 1168.
9
4364 J. AM. CHEM. SOC. VOL. 124, NO. 16, 2002