Syn th esis of 4-(1-Alk en yl)isoqu in olin es by P a lla d iu m (II)-Ca ta lyzed
Cycliza tion /Olefin a tion
Qinhua Huang and Richard C. Larock*
Department of Chemistry, Iowa State University, Ames, Iowa 50011
larock@iastate.edu
Received J uly 2, 2002
A variety of 4-(1-alkenyl)-3-arylisoquinolines have been prepared in moderate to excellent yields
by the Pd(II)-catalyzed cyclization of 2-(1-alkynyl)arylaldimines in the presence of various alkenes.
The introduction of an o-methoxy group on the arylaldimine promotes the Pd-catalyzed cyclization
and stabilizes the resulting Pd(II) intermediate, improving the yields of the isoquinoline products.
Ketone-containing isoquinolines 36 and 49-51 have also been prepared by this process when
unsaturated alcohols are employed as the alkenes.
In tr od u ction
The transition metal-catalyzed cyclization of alkynes,9
which possess nucleophilic centers in close proximity to
the carbon-carbon triple bond, by in situ coupling/
cyclization reactions,10 and reactions promoted by vinylic,
aryl, alkynyl, and acylpalladium complexes,11 have also
been shown to be extremely effective for the synthesis of
a wide variety of carbo- and heterocycles.
The palladium(II)-catalyzed cyclization/olefination re-
action of 2-(1-alkynyl)aniline derivatives to indoles has
been reported by Sakamoto et al.12 They report that the
reaction of N-protected 2-(1-alkynyl)anilines with electron-
deficient alkenes in the presence of PdCl2 and CuCl2 gives
2-substituted 3-(1-alkenyl)indoles (eq 1). Our interest in
The synthesis of isoquinolines has received consider-
able attention due to the fact that the isoquinoline ring
system is present in numerous naturally occurring
alkaloids.1 Although classical methods have frequently
been employed in the total synthesis of isoquinoline
alkaloids, these approaches often have drawbacks. For
example, the Bischler-Napieralski,2 Pictet-Spengler,3
and Pomeranz-Fritsch4 protocols require relatively strong
acids to cyclize â-phenethylamines. Also, the Bischler-
Napieralski2 and Pictet-Spengler3 reactions afford di-
hydro- and tetrahydroisoquinolines, respectively. An
additional step involving dehydrogenation is thus re-
quired to complete the synthesis of the isoquinoline.
Substituted isoquinoline heterocycles have also been
synthesized by employing palladium methodology. For
instance, 3,4-disubstituted isoquinolines have been
achieved by the annulation of internal alkynes by cyclo-
palladated N,N-dimethylbenzylamine complexes,5 cyclo-
palladated N-tert-butylbenzaldimine tetrafluoroborates,6
cyclopalladated N-tert-butylarylaldimines,7 and N-tert-
butyl-o-iodobenzaldimines plus a palladium catalyst.8
4-(1-alkenyl)isoquinolines has prompted us to develop a
convenient new synthesis of these isoquinolines by the
(1) (a) Huang, Q.; Hunter J . A.; Larock, R. C. Org. Lett. 2001, 3,
2973. (b) Huang, Q.; Larock, R. C. Tetrahedron Lett. 2002, 43, 3557.
(c) Buske, A.; Busemann, S.; Mu¨hlbacker, J .; Schmidt, J .; Porzel, A.;
Bringmann, G.; Adam, G. Tetrahedron 1999, 55, 1079. (d) Bringmann,
G.; Holenz, J .; Weirich, R.; Ru¨benacker, M.; Funke, C. Tetrahedron
1998, 54, 497. (e) Xu, X.-Y.; Qin, G.-W.; Xu, R.-S.; Zhu, X.-Z.
Tetrahedron 1998, 54, 14179. (f) Brossi, A. Heterocycles 1988, 12, 2905.
(g) Fitzgerald, J . J .; Michael, F. E.; Olofson, R. A. Tetrahedron Lett.
1994, 49, 9191. (h) Rozwadowska, M. D. Heterocycles 1994, 39, 903.
(i) Kohno, H.; Yamada, K. Heterocycles 1999, 51, 103. (j) Flippin, L.
A.; Muchowski, J . M. J . Org. Chem. 1993, 58, 2631. (k) Aubert, T.;
Farnier, M.; Hanquet, B.; Guilard, R. Synth. Commun. 1987, 17, 1831.
(l) Bobbitt, J . M.; Bourque, A. J . Heterocycles 1987, 25, 601. (m)
Diederen, J . J . H.; Sinkeldam, R. W.; Fru¨hauf, H.-W.; Hiemstra, H.;
Vrieze, K. Tetrahedron Lett. 1999, 40, 4255.
(7) Girling, I. R.; Widdowson, D. A. Tetrahedron Lett. 1982, 23, 4281.
(8) (a) Roesch, K. R.; Larock, R. C. J . Org. Chem. 1998, 63, 5306.
(b) Roesch, K. R.; Zhang, H.; Larock, R. C. J . Org. Chem. 2001, 66,
8042.
(9) For recent leading reviews, see: (a) Schore, N. E. Chem. Rev.
1988, 88, 1081. (b) Pfeffer, M. Recl. Trav. Chim. Pays-Bas 1990, 109,
567. (c) Negishi, E.; Cope´ret, C.; Ma, S.; Liou, S.; Liu, F. Chem. Rev.
1996, 96, 365. (d) Ojima, I.; Tzamarioudaki, M.; Li, Z.; Donovan, R. J .
Chem. Rev. 1996, 96, 635.
(10) For recent leading references, see: (a) Cacchi, S.; Fabrizi, G.;
Moro, L. Tetrahedron Lett. 1998, 39, 5101. (c) Cacchi, S.; Fabrizi, G.;
Moro, L. J . Org. Chem. 1997, 62, 5327 and references therein. (d)
Chowdhury, C.; Chaudhuri, G.; Guha, S.; Mukherjee, A. K.; Kundu,
N. G. J . Org. Chem. 1998, 63, 1863. (e) Arcadi, A.; Cacchi, S.; Del
Rosario, M.; Fabrizi, G.; Marinelli, F. J . Org. Chem. 1996, 61, 9280.
(11) For recent leading references, see: (a) Dai, G.; Larock, R. C. J .
Org. Chem. 2002, 67, 7142. (b) Dai, G.; Larock, R. C. Org. Lett. 2001,
3, 4035. (c) Arcadi, A.; Cacchi, S.; Fabrizi, G.; Marinelli, F. Synlett 2000,
3, 394. (d) Monteiro, N.; Balme, G. Synlett 1998, 746. (e) Cacchi, S.;
Fabrizi, G.; Pace, P. J . Org. Chem. 1998, 63, 1001. (f) Larock, R. C.;
Pace, P.; Yang, H.; Russell, C. E.; Cacchi, S.; Fabrizi, G. Tetrahedron
1998, 54, 9961.
(2) Whaley, W. M.; Govindachari, T. R. In Organic Reactions;
Adams, R., Ed.; Wiley: New York, 1951; Vol. 6, pp 151-190.
(3) Whaley, W. M.; Govindachari, T. R. In Organic Reactions;
Adams, R., Ed.; Wiley: New York, 1951; Vol. 6, pp 74-150.
(4) Gensler, W. J . In Organic Reactions; Adams, R., Ed.; Wiley: New
York, 1951; Vol. 6, pp 191-206.
(5) Maassarani, F.; Pfeffer, M.; Le Borgne, G. J . Chem. Soc., Chem.
Commun. 1987, 565.
(6) Wu, G.; Geib, S. J .; Rheingold, A. L.; Heck, R. F. J . Org. Chem.
1988, 53, 3238.
(12) Yasuhara, A.; Kaneko, M.; Sakamoto, T. Heterocycles 1998, 48,
1793.
10.1021/jo0261303 CCC: $25.00 © 2003 American Chemical Society
Published on Web 12/19/2002
980
J . Org. Chem. 2003, 68, 980-988