Polyamines as Antagonists
J ournal of Medicinal Chemistry, 2002, Vol. 45, No. 9 1877
(15) Pedersen, S. E.; Cohen, J . B. d-Tubocurarin binding sites are
located at R-δ and R-γ subunit interfaces of the nicotinic
acetylcholine receptor. Proc. Natl. Acad. Sci. U.S.A. 1990, 87,
2785-2789.
(16) Giraudat, J .; Dennis, M.; Heidmann, T.; Cahng, J . Y.; Changeux,
J .-P. Structure of the high-affinity binding site for noncompeti-
tive blockers of the acetylcholine receptor: serine 262 of the delta
subunits is labeled by 3H-chlorpromazine. Proc. Natl. Acad. Sci.
U.S.A. 1986, 83, 2719-2723.
resulting in 50% of the maximum response (EC50), was
estimated graphically from the individual concentration-
response curves after checking for parallelism of the curves.
Antagonism of nAChRs was estimated by determining the
concentration of the noncompetitive antagonist, which inhib-
ited 50% of the maximum response to the agonist. Three
different antagonist concentrations were used, and each
concentration was tested at least four times. Data were
analyzed using a pharmacological computer program.39
Dissociation constants (Kapp values) for nonfluorescent
competing ligands were derived from analysis of their capacity
to displace the fluorescent ligand, ethidium. For calculations
of Kapp values, fluorescence data were plotted according to a
logarithmic formula described by Herz et al.34
(17) Arias, H. R. Binding sites of exogenous and endogenous non-
competitive inhibitors of the nicotinic acetylcholine receptor.
Biochim. Biophys. Acta 1998, 1376, 173-220.
(18) Hucho, F.; Hilgenfeld, R. The selectivity filter of a ligand-gated
ion channel. The helix-M2 model of the ion channel of the
nicotinic acetylcholine receptor. FEBS Lett. 1989, 257, 17-23.
(19) Eldefrawi, A. T.; Eldefrawi, M. E.; Konno, K.; Mansour, N. A.;
Nakanishi, K.; Oltz, E.; Usherwood, P. N. R. Structure and
synthesis of a potent glutamate receptor antagonist in wasp
venom. Proc. Natl. Acad. Sci. U.S.A. 1988, 85, 4910-4913.
(20) Rozental, R; Giles, G.; Scoble, T.; Albuquerque, E. X.; Idriss, M.;
Sherby, S.; Satelle, D. B.; Nakanishi, K.; Konno, K.; Eldefrawi,
A. T.; Eldefrawi, M. E. Allosteric inhibition of nicotinic acetyl-
choline receptors of vertebrates and insects by philanthotoxin.
J . Pharmacol. Exp. Ther. 1989, 249, 123-130.
Ack n ow led gm en t. Grants from the University of
Bologna, the European Community (Grant BMH4-
CT97-2395), MURST, the Deutsche Forschungsgemein-
schaft (Grant DFG, Sfb 449), and the Fonds der Che-
mischen Industrie supported this research.
(21) Nakanishi, K.; Huang, X.; J iang, H.; Liu, Y.; Fang, K.; Huang,
D.; Choi, S.-K.; Katz, E.; Eldefrawi, M. Structure-binding relation
of philanthotoxins from nicotinic acetylcholine receptor binding
assay. Bioorg. Med. Chem. 1997, 5, 1969-1988.
Refer en ces
(1) Part 1: Rosini, M.; Budriesi, R.; Bixel, M. G.; Bolognesi, M. L.;
Chiarini, A.; Hucho, F.; Krogsgaard-Larsen, P.; Mellor, I. R.;
Minarini, A.; Tumiatti, V.; Usherwood, P. N. R.; Melchiorre, C.
Design, synthesis, and biological evaluation of symmetrically and
unsymmetrically substituted methoctramine-related polyamines
as muscular nicotinic receptor noncompetitive antagonists. J .
Med. Chem. 1999, 42, 5212-5223.
(2) Melchiorre, C.; Cassinelli, A.; Quaglia, W. Differential blockade
of muscarinic receptor subtypes by polymethylene tetraamines.
Novel class of selective antagonists of cardiac M-2 muscarinic
receptors. J . Med. Chem. 1987, 30, 201-204.
(3) Bixel, M. G.; Krauss, M.; Liu, Y.; Bolognesi, M. L.; Rosini, M.;
Mellor, I. R.; Usherwood, P. N. R.; Melchiorre, C.; Nakanishi,
K.; Hucho, F. Structure-activity relationship and site of binding
of polyamine derivatives at the nicotinic acetylcholine receptor.
Eur. J . Biochem 2000, 267, 110-120.
(4) Bixel, M. G.; Weise, C.; Bolognesi, M. L.; Rosini, M.; Brierly, M.
J .; Mellor, I. R.; Usherwood, P. N. R.; Melchiorre, C.; Hucho, F.
Location of the polyamine binding site in the vestibule of the
nicotinic acetylcholine receptor ion channel. J . Biol. Chem. 2001,
276, 6151-6160.
(5) Bolognesi, M. L.; Minarini, A.; Budriesi, R.; Cacciaguerra, S.;
Chiarini, A.; Spampinato, S.; Tumiatti, V.; Melchiorre, C.
Universal template approach to drug design: polyamines as
selective muscarinic receptor antagonists. J . Med. Chem. 1998,
41, 4150-4160.
(6) (a) Changeux, J .-P. Functional architecture and dynamics of the
nicotinic acetylcholine receptor: an allosteric ligand-gated ion
channel. Fidia Res. Found. Neurosci. Award Lect. 1990, 4, 21-
168. (b) Changeaux, J .-P.; Edelstein, S. J . Allosteric receptor
after 30 years. Neuron 1998, 21, 959-980.
(7) Karlin, A.; Akabas, M. H. Towards a structural basis for the
function of nicotinic acetylcholine receptors and their cousins.
Neuron 1995, 15, 1231-1244.
(8) Hucho, F.; Tsetlin, V.; Machold, J . The emerging three-
dimensional structure of a receptor, the nicotinic acetylcholine
receptor. Eur. J . Biochem. 1996, 239, 539-557.
(9) Noda, M.; Takahashi, H.; Tanabe, T.; Toyosato, M.; Kikyotani,
S.; Furutani, Y.; Hirose, T.; Takashima, H.; Inayama, S.; Miyata,
T.; Numa, S. Structural homology of Torpedo californica ace-
tylcholine receptor subunits. Nature 1983, 302, 538-532.
(10) Hucho, F.; Oberthu¨r, W.; Lottspeich, F. The ion channel of the
nicotinic acetylcholine receptor is formed by the homologous
helices M II of the receptor subunits. FEBS Lett. 1986, 205, 137-
142.
(22) Quaglia, W.; Giardina`, D.; Marucci, G.; Melchiorre, C.; Minarini,
A.; Tumiatti, V. Structure-activity relationships among meth-
octramine-related polymethylene tetraamines. 3. Effect of the
four nitrogens on M2 muscarinic blocking activity as revealed
by symmetrical and unsymmetrical polyamines. Farmaco 1991,
46, 417-434.
(23) This compound was previously synthesized by following
a
different synthetic pathway. Shpital’nyi, A. S.; Meos, E. A.;
Perepelkin, K. E. Opening of the ring of ꢀ-caprolactam by
dicarboxylic acids of the aliphatic series and by amines. Zh.
Obshch. Khim. 1953, 23, 1382-1383.
(24) Melchiorre, C.; Gulini, U.; Giardina`, D.; Gallucci, P.; Brasili, L.
Correlation between adrenergic R-receptor antagonists of tet-
ramine disulfides and benzodioxanes classes. Eur. J . Med. Chem.
1984, 19, 37-42.
(25) Blagbrough, I. S.; Geall, A. J . Practical synthesis of unsym-
metrical polyamine amides. Tetrahedron Lett. 1998, 39, 439-
442.
(26) Wulff, G.; Lauer, M.; Disse, B. On the synthesis of monomers
capable for the introduction of amino groups into polymers in a
defined distance. Chem. Ber. 1979, 112, 2854-2865.
(27) Melchiorre, C.; Quaglia, W.; Picchio, M. T.; Giardina`, D.; Brasili,
L.; Angeli, P. Structure-activity relationships among methoc-
tramine-related polymethylene tetraamines. Chain-length and
substituent effects on M-2 muscarinic receptor blocking activity.
J . Med. Chem. 1989, 32, 79-84.
(28) Goodnow, R., J r.; Konno, K.; Niwa, M.; Kallimopoulus, T.;
Bukonwik, R.; Lenares, D.; Nakanishi, K. Synthesis of glutamate
receptor antagonist philanthotoxin-433 (PhTX-433) and its
analogues. Tetrahedron 1990, 46, 3267-3286.
(29) Dupuis, G. An asymmetrically disulfide-containing photoreactive
heterobifunctional reagent designed to introduce radioactive
labeling into biological receptors. Can. J . Chem. 1987, 65, 2450-
2453.
(30) Bhatt, M. V.; Hosur, B. M. Electron-transfer mechanism for
periodic acid oxidation of aromatic substrates. Indian J . Chem.
1986, 25B, 1004-1005.
(31) Greenwood, F. C.; Hinter, W. M.; Glover, J . S. The preparation
of 131I-labelled human growth hormone of high specific radioac-
tivity. Biochem. J . 1963, 89, 114-121.
(32) Furchgott, R. F. The classification of adrenoceptors (adrenergic
receptors). An evaluation from the standpoint of receptor theory.
In Catecholamines; Blaschko, H., Muscholl, E., Eds.; Springer-
Verlag: Berlin, 1972; pp 283-335.
(11) Galzi, J .-L.; Devillers-Thie´ry, A. Q.; Hussy, N.; Bertrand, S.;
Changeux, J .-P.; Bertrand, D. Mutations in the ion channel
domain of a neuronal nicotinic acetylcholine receptor convert ion
selectivity from cation to anionic. Nature 1992, 359, 500-505.
(12) Imoto, K.; Busch, C.; Sakmann, B.; Mishina, M.; Konno, T.;
Nakai, J .; Bujo, H.; Mori, Y.; Fukudo, K.; Numa, S. Rings of
negatively charged amino acids determine the acetylcholine
receptor channel conductance. Nature 1988, 335, 645-648.
(13) Konno, T.; Busch, C.; Von Kitzing, E.; Imoto, K.; Wang, F.; Nakai,
J .; Mishina, M.; Numa, S.; Sakmann, B. Rings of anionic amino
acids as structural determinants of ion selectivity in the
acetylcholine receptor channel. Proc. R. Soc. London, Ser. B.
1991, 244, 69-79.
(33) Teodori, E.; Gualtieri, F.; Angeli, P.; Brasili, L.; Giannella, M.;
Pigini, M. Resolution, absolute configuration and cholinergic
enantioselectivity of (+)- and (-)-cis-2-methyl-5-[(dimethylami-
no)methyl]-1,3-oxathiolane methiodide. J . Med. Chem. 1986, 29,
1610-1615.
(34) Herz, J . M.; J ohnson, D. A.; Taylor, P. Interaction of noncompeti-
tive inhibitors with the acetylcholine receptor. J . Biol. Chem.
1987, 262, 7238-7247.
(35) Minarini, A.; Budriesi, R.; Chiarini, A.; Melchiorre, C.; Tumiatti,
V. Further investigation on methoctramine-related tetra-
amines: effects of terminal N-substitution and of chain separat-
ing the four nitrogens on M2 muscarinic receptor blocking
activity. Farmaco 1991, 46, 1167-1178.
(14) Blount, P.; Merlie, J . P. Molecular basis of the two nonequivalent
ligand binding sites of the muscle nicotinic acetylcholine recep-
tor. Neuron 1989, 3, 349-357.