S. C. Smith, P. D. Bentley / Tetrahedron Letters 43 (2002) 899–902
901
Scheme 4. Reagents and conditions: (i) N-methylallylamine, K2CO3, DMF, 0°C–rt, 58%, as a 13:5 cis:trans mixture by GC after
column chromatography; (ii) benzylamine, xylene, reflux, 48 h, 55%; (iii) H2, Pd/C, 1 atm EtOH, quant.; (iv) 230°C, neat, distil
off EtOH, 71%; (v) LiAlH4, Et2O, 0°C–reflux, 79%; (vi) H2, 6.5 bar, Pd/C, EtOH, 35 h, 94%.
Scheme 5. Reagents and conditions: (i) (a) 14, oxalyl chloride, THF, DMF (cat.), rt, 1 h; (b) 13, Et3N, rt, 4 h, 57%.
J.; Coldham, I.; Middleton, M. L. Synlett 2000, 236–238;
(d) Glaeske, K. W.; West, F. G. Org. Lett. 1999, 1,
31–33.
References
1. (a) Irie, H.; Masaki, N.; Ohno, K.; Osaki, K.; Taga, T.;
Uyeo, S. J. Chem. Soc. D 1970, 17, 1066; (b) Masaki, N.
Kagaku No Ryoiki, 1971, 25(4), A-25 (CA75(8):54716e).
2. Sakata, K.; Aoki, K.; Change, C-F.; Sakurai, A.;
Tamura, S.; Murakoshi, S. Agric. Biol. Chem. 1978, 42
(2), 457–463.
3. For synthetic approaches to stemofoline and related
structures, see: (a) Kende, A. S.; Smalley, T. L., Jr.;
Huang, H. J. Am. Chem. Soc. 1999, 121, 7431–7432; (b)
Kercher, T.; Livinghouse, T. J. Am. Chem. Soc. 1996,
118, 4200–1; (c) Beddoes, R. L.; Davies, M. P. H.;
Thomas, E. J. J. Chem. Soc., Chem. Commun. 1992,
538–40.
4. (a) Doyle, I. R.; Massy-Westropp, R. A. Aust. J. Chem.
1982, 35, 1903–1911; (b) Price, M. F.; Massy-Westropp,
R. A. Aust. J. Chem. 1980, 33, 333–341.
5. (a) Gill, G. B.; James, G. D.; Oates, K. V.; Pattenden, G.
J. Chem. Soc., Perkin Trans. 1 1993, 2567–2579; (b)
James, G. D.; Mills, S. D.; Pattenden, G. J. Chem. Soc.,
Perkin Trans. 1 1993, 2581–2584.
6. (a) Cignarella, G.; Nathansohn, G. J. Org. Chem. 1961,
26, 1500–1504; (b) Cignarella, G.; Nathansohn, G.;
Occelli, E. J. Org. Chem. 1961, 26, 2747–2750; (c) Black-
man, S. W.; Baltzly, R. J. Org. Chem. 1961, 26, 2750–
2755.
7. Barlocco, D.; Cignarella, G.; Tondi, D.; Vianello, P.;
Villa, S.; Bartolini, A.; Ghelardini, C.; Galeotti, N.;
Anderson, D. J.; Kuntzweiler, T. A.; Colombo, D.;
Toma, L. J. Med. Chem. 1998, 41, 674–681.
8. (a) Coldham, I.; Middleton, M. L.; Taylor, P. L. J.
Chem. Soc., Perkin Trans. 1 1997, 20, 2951; (b) Kaiser, G.
V.; Ashbrook, C. W.; Baldwin, J. E. J. Am. Chem. Soc.
1971, 93, 2342; (c) Arbore, A. P. A.; Cane-Honeysett, D.
9. The stereochemistry of the inseparable cis and trans
diesters of pyrrolidine (8) was confirmed empirically by
the observation that only the cis isomer was able to lead
on to cyclisation to give the 3,8-diazabicyclo[3.2.1]octane
skeleton in subsequent steps. It was possible to isolate the
unreacted trans materials after the cyclisation reaction.
10. Typical experimental procedure for tandem intramolecular
cyclisation and Stevens rearrangement. Preparation of
compound 9. Diethyl meso-2,5-dibromoadipate (11.5 g,
31.7 mmol) was dissolved in dry DMF (25 ml) and
K2CO3 (8.75 g, 63 mmol) was added. The mixture was
cooled under N2 to 0°C (ice/water bath) with stirring and
N-methylallylamine (2.25 g, 3.04 ml, 31.7 mmol) was
added in one portion. The reaction was mildly exother-
mic and required cooling for 1 h, after which time it was
allowed to warm to ambient temperature (25°C). After
stirring for 16 h, the reaction was poured into a mixture
of ether (100 ml) and water (100 ml). The aqueous phase
was re-extracted with ether (100 ml). The combined
organic phases were washed with water (×2), brine and
dried (MgSO4). Evaporation and purification by flash
chromatography on silica, eluting with ethyl acetate in
hexane (gradient 15–25%) gave 9 (as a 13:5 mixture of
1
cis:trans diester isomers) as an oil 4.94 g (58%). H NMR
(270 MHz, CDCl3): l (ppm) 1.21–1.32 (6H, m), 1.70–1.82
(1H, m), 1.85–2.04 (1H, m), 2.04–2.16 (1H, m), 2.16–2.26
(1H, m), 2.36 (trans) and 2.56 (cis) (3H, 2s), 2.40–2.50
(1H, m), 2.61–2.74 (1H, m), 3.48–3.55 (trans) and 3.57–
3.64 (cis) (1H, 2m), 4.07–4.20 (4H, m), 5.03–5.16 (2H, m),
5.60–5.76 (cis) and 5.78–5.92 (trans) (1H, 2m); calcd for
C14H24NO4 (MH+) 270.1705, found 270.1698.