Mendeleev Commun., 2021, 31, 548–549
References
Ar
1 (a) T.-S. Chou and H.-H. Tso, Org. Prep. Proced. Int., 1989, 21, 257;
(b) K. Ando and H. Takayama, Heterocycles, 1994, 37, 1417;
(c) M. G. Brant and J. E. Wulff, Org. Lett., 2012, 14, 5876.
i or iiꢃ iii
−
ArN2ꢀBꢁꢂ
ꢀ
S
S
O
O
O
O
ꢀa−p
2 (a) K. M.-H. Lim and T. Hayashi, J. Am. Chem. Soc., 2015, 137, 3201;
(b) T. Zhou, B. Peters, M. F. Maldonado, T. Govender and
P. G. Andersson, J. Am. Chem. Soc., 2012, 134, 13592; (c) Y. Kita,
S. Hida, K. Higashihara, H. S. Jena, K. Higashida and K. Mashima,
Angew. Chem., Int. Ed., 2016, 55, 8299; (d) K. Meng, J. Xia, Y. Wang,
X. Zhang, G. Yang and W. Zhang, Org. Chem. Front., 2017, 4, 1601;
(e) B. S. Takale, R. R. Thakore, E. S. Gao, F. Gallou and B. H. Lipshutz,
Green Chem., 2020, 22, 6055.
a Ar ꢄ Phꢅ ꢆꢇꢈ ꢉiꢊꢃ ꢋꢇꢈ ꢉiiꢊ
b Ar ꢄ ꢂꢌMeCꢋꢍꢂꢅ ꢆꢆꢈ ꢉiꢊꢃ ꢎ1ꢈ ꢉiiꢊ
c Ar ꢄ ꢂꢌButCꢋꢍꢂꢅ ꢋꢇꢈ ꢉiꢊꢃ ꢎ2ꢈ ꢉiiꢊ
d Ar ꢄ ꢂꢌMeOCꢋꢍꢂꢅ ꢎ2ꢈ ꢉiꢊꢃ ꢂ0ꢈ ꢉiiꢃ ꢂ hꢊ
e Ar ꢄ 2ꢌnaꢏhthylꢅ ꢋꢐꢈ ꢉiꢊꢃ 21ꢈ ꢉiiꢃ ꢂ hꢊ
3 (a) M. G. Brant, C. M. Bromba and J. E. Wulff, J. Org. Chem., 2010, 75,
f
Ar ꢄ ꢂꢌClCꢋꢍꢂꢅ ꢑ2ꢈ ꢉiꢊꢃ ꢆꢂꢈ ꢉiiꢊ
’
’
6312; (b) D. Margetic, Y. Murata, K. Komatsu and Ž. Marinic, Helv.
Chim. Acta, 2009, 92, 298.
g Ar ꢄ ꢂꢌBrCꢋꢍꢂꢅ ꢎꢎꢈ ꢉiꢊꢃ ꢑꢑꢈ ꢉiiꢊ
ꢁ Ar ꢄ ꢐꢌClCꢋꢍꢂꢅ ꢆ2ꢈ ꢉiꢊꢃ ꢆꢂꢈ ꢉiiꢊ
4 (a) S. Löber, N. Tschammer, H. Hübner, M. R. Melis, A. Argiolas and
P. Gmeiner, ChemMedChem, 2009, 4, 325; (b) H. T. Dang,V. D. Nguyen,
H. H. Pham, H. D. Arman and O. V. Larionov, Tetrahedron, 2019, 75,
3258; (c) X.-X. Wu, H.Ye, H. Dai, B.Yang,Y. Wang, S. Chen and L. Hu,
Org. Chem. Front., 2020, 7, 2731; (d) R. Bloch, C. Benecou and
E. Guibé-Jampel, Tetrahedron Lett., 1985, 26, 1301; (e) R. Bloch,
D. Hassan and X. Mandard, Tetrahedron Lett., 1983, 24, 4691;
( f ) H. T. Dang, V. D. Nguyen, G. C. Haug, N. T. H. Vuong, H. D. Arman
and O. V. Larionov, ACS Catal., 2021, 11, 1042.
5 (a) S. F. Martin, S. R. Desai, G. W. Philips and A. C. Miller, J. Am.
Chem. Soc., 1980, 102, 3294; (b) T. Nomoto and H. Takayama,
Heterocycles, 1985, 23, 2913; (c) H. Bruyère, S. Samaritani,
S. Ballereau, A. Tomas and J. Royer, Synlett, 2005, 1421.
i
Ar ꢄ ꢐꢌꢁꢐCCꢋꢍꢂꢅ ꢎꢆꢈ ꢉiꢊꢃ ꢑ2ꢈ ꢉiiꢊ
Ar ꢄ ꢂꢌꢁꢐCCꢋꢍꢂꢅ 0ꢈ ꢉiꢊꢃ ꢎꢑꢈ ꢉiiꢊ
ꢂ
ꢃ Ar ꢄ ꢂꢌO2NCꢋꢍꢂꢅ ꢇꢋꢈ ꢉiꢊꢃ ꢆ0ꢈ ꢉiiꢊ
Ar ꢄ ꢂꢌNCCꢋꢍꢂꢅ ꢂꢇꢈ ꢉiꢊꢃ ꢇꢑꢈ ꢉiiꢃ ꢂ hꢊ
l
m Ar ꢄ 2ꢌMeOCꢋꢍꢂꢅ 0ꢈ ꢉiꢊꢃ ꢎ0ꢈ ꢉiiꢊ
n Ar ꢄ 1ꢌnaꢏhthylꢅ ꢂꢂꢈ ꢉiꢊꢃ ꢋ1ꢈ ꢉiiꢃ ꢂ hꢊ
o Ar ꢄ 2ꢌꢁCꢋꢍꢂꢅ ꢂꢑꢈ ꢉiꢊꢃ ꢆꢋꢈ ꢉiiꢊ
p Ar ꢄ 2ꢌBrCꢋꢍꢂꢅ ꢐꢂꢈ ꢉiꢊꢃ ꢎꢎꢈ ꢉiiꢊ
Scheme 2 Reagents and conditions: i, Pd(OAc)2 (3 mol%), MeOH
(2 ml mmol-1), 50°C, 1 h; ii, Pd(OAc)2 (3 mol%), THF (5 ml mmol-1),
50°C, 1 or 4 h; iii, Et3N (1 ml mmol-1), CH2Cl2 (5 ml mmol-1), reflux,
6-24 h.
6 Y. T. Tao, C. L. Liu, S. J. Lee and S. S. P. Chou, J. Org. Chem., 1986, 51,
4718.
7 (a) L. A. Pasfield, L. de la Cruz, J. Ho, M. L. Coote, G. Otting and
M. D. McLeod, Asian J. Org. Chem., 2013, 2, 60; (b) S. Yamada,
H. Suzuki, H. Naito, T. Nomoto and H. Takayama, J. Chem. Soc., Chem.
+
-
4-O2NC6H4N2 BF4 as a model substrate, and Pd(OAc)2 or
Pd2(dba)3 ∙ CHCl3 as a palladium source (see Table S1, entries
13-17) and found that the yields from good to almost quantitative
of the desired 3-arylbutadiene sulfones 2j-p were achieved using
Pd(OAc)2 and THF as the solvent (see Scheme 2). Carrying out
the reaction in THF was also useful in cases of aryldiazonium
salts with weak electron-withdrawing substituents (see Scheme 2,
products 2f-i). On the contrary, for substrates with electron-
donating and electroneutral groupings the yields stayed better in
methanol (products 2a-e).
Commun., 1987, 332; (c) A. Köse, A. Ünal, E. Sahin, U. Bozkaya and
,
Y. Kara, Beilstein J. Org. Chem., 2019, 15, 931.
8 L. Martial and L. Bischoff, Synlett, 2015, 26, 1225.
9 T. S. Chou, S. C. Hung and H. H. Tso, J. Org. Chem., 1987, 52, 3394.
10 S. P. Bew and J. B. Sweeney, Synlett, 1997, 1273.
11 P. J. Harrington and K. A. DiFiore, Tetrahedron Lett., 1987, 28, 495.
12 S. Sengupta and S. Bhattacharyya, Synth. Commun., 1996, 26, 231.
13 (a) D. A. Alentiev, S. A. Korchagina, E. S. Finkel’shtein, M. S. Nechaev,
A. F. Asachenko, M. A. Topchiy, P. S. Gribanov and M. V. Bermeshev,
Russ. Chem. Bull., Int. Ed., 2018, 67, 121 (Izv. Akad. Nauk, Ser. Khim.,
2018, 121); (b) P. S. Gribanov, Yu. D. Golenko, M. A. Topchiy,
A. N. Philippova, N.Yu. Kirilenko, N.V. Krivoshchapov, G. K. Sterligov,
A. F. Asachenko, M. V. Bermeshev and M. S. Nechaev, Mendeleev
Commun., 2018, 28, 323; (c) P. S. Gribanov, G. A. Chesnokov,
P. B. Dzhevakov, N. Yu. Kirilenko, S. A. Rzhevskiy, A. A. Ageshina,
M. A. Topchiy, M. V. Bermeshev, A. F. Asachenko and M. S. Nechaev,
Mendeleev Commun., 2019, 29, 147; (d) P. B. Dzhevakov, M.A. Topchiy,
A. A. Ageshina, L. I. Minaeva, S. A. Rzhevskiy, M. S. Nechaev,
S. N. Osipov and A. F. Asachenko, Russ. Chem. Bull., Int. Ed., 2020, 69,
2307 (Izv. Akad. Nauk, Ser. Khim., 2020, 2307); (e) S. A. Rzhevskiy,
M. A. Topchiy, Yu. D. Golenko, P. S. Gribanov, G. K. Sterligov,
N. Yu. Kirilenko, A. A. Ageshina, M. V. Bermeshev, M. S. Nechaev and
A. F. Asachenko, Mendeleev Commun., 2020, 30, 569.
In conclusion, we have developed a simple and efficient
method for the preparation of 3-arylbutadiene sulfones via the
Heck-Matsuda reaction. The reactions can be carried out in a
gram scale, using a bench stable and inexpensive aryldiazonium
salts in methanol or THF in the presence of Pd(OAc)2 under
ligand-free conditions. In view of the readily available starting
materials, simple operation of the process, as well as high
regioselectivity, this methodology may become a useful tool for
the synthesis of branched 3-arylbutadiene sulfones and their
derivatives. The new method is expected to find applications in
medicinal chemistry and organic synthesis.
14 (a) M. A. Topchiy, P. B. Dzhevakov, N. Yu. Kirilenko, S. A. Rzhevskiy,
A. A. Ageshina, V. N. Khrustalev, D. Yu. Paraschuk, M. V. Bermeshev,
M. S. Nechaev and A. F. Asachenko, Mendeleev Commun., 2019, 29,
128; (b) M. A. Topchiy, S. A. Rzhevskiy, A. A. Ageshina,
N. Yu. Kirilenko, G. K. Sterligov, D. Yu. Mladentsev, D. Yu. Paraschuk,
S. N. Osipov, M. S. Nechaev andA. F.Asachenko, Mendeleev Commun.,
2020, 30, 717; (c) G. A. Chesnokov, A. A. Ageshina, A. V. Maryanova,
S. A. Rzhevskiy, P. S. Gribanov, M. A. Topchiy, M. S. Nechaev and
A. F. Asachenko, Russ. Chem. Bull., Int. Ed., 2020, 69, 2370 (Izv. Akad.
Nauk, Ser. Khim., 2020, 2370); (d) P. S. Gribanov, D. A. Lypenko,
A. V. Dmitriev, S. I. Pozin, M. A. Topchiy, A. F. Asachenko,
D. A. Loginov and S. N. Osipov, Mendeleev Commun., 2021, 31, 33.
Maxim A. Topchiy, Vasilii N. Bogachev, Grigorii K. Sterligov
and Andrey F. Asachenko are thankful to Russian Science
Foundation (RSF) for financial support (project no.
19-73-10185). Part of this work was carried out by
Sergey A. Rzhevskiy, Lidiya I. Minaeva and Mikhail S. Nechaev
as part of the A. V. Topchiev Institute of Petrochemical Synthesis
(TIPS) Russian Academy of Sciences (RAS) State Program.
This work was performed using the equipment of the Shared
Research Center ‘Analytical center of deep oil processing and
petrochemistry of TIPS RAS’.
Online Supplementary Materials
Supplementary data associated with this article can be found
in the online version at doi: 10.1016/j.mencom.2021.07.037.
Received: 19th March 2021; Com. 21/6496
– 549 –