1776 J ournal of Medicinal Chemistry, 2002, Vol. 45, No. 9
J ohannesson et al.
(10) Creighton, C. J .; Reitz, A. B. Synthesis of an Eight-Membered
Cyclic Pseudo-Dipeptide Using Ring Closing Metathesis. Org.
Lett. 2001, 3, 893-895.
(11) Rudinger, J .; J osˇt, K. A Biologically Active Analogue of Oxytocin
Not Containing a Disulfide Group. Experientia 1964, 20, 570-
571.
(12) Yu, L.; Lai, Y.; Wade, J . V.; Coutts, S. M. A Simple and Efficient
Method for the Syntheses of Thioether Cyclic Peptides. Tetra-
hedron Lett. 1998, 39, 6633-6636 and references therein.
(13) Feng, Y.; Pattarawarapan, M.; Wang, Z.; Burgess, K. Solid-Phase
SN2 Macrocyclization Reactions To Form â-Turn Mimics. Org.
Lett. 1999, 1, 121-124.
(14) Li, H.; J iang, X.; Howell, S. B.; Goodman, M. Synthesis,
Conformational Analysis and Bioactivity of Lan-7, a Lanthionine
Analog of TT-232. J . Pept. Sci. 2000, 6, 26-35.
(15) Li, H.; J iang, X.; Goodman, M. Synthesis, Conformational
Analysis and Biological Activities of Lanthionine Analogs of a
Cell Adhesion Modulator. J . Pept. Sci. 2001, 7, 82-91.
(16) Mosberg, H. I.; Omnaas, J . R. Dithioether-Containing Cyclic
Peptides. J . Am. Chem. Soc. 1985, 107, 2986-2987.
(17) Szewczuk, Z.; Rebholz, K. L.; Rich, D. H. Synthesis and Biological
Activity of New Conformationally Restricted Analogues of Pep-
statin. Int. J . Pept. Protein Res. 1992, 40, 233-242.
(18) Ueki, M.; Ikeo, T.; Iwadate, M.; Asakura, T.; Williamson, M. P.;
Slaninova´, J . Solid Phase Synthesis and Biological Activities of
[Arg8]-Vasopressin Methylenedithioether. Bioorg. Med. Chem.
Lett. 1999, 9, 1767-1772.
(19) Ueki, M.; Ikeo, T.; Hokari, K.; Nakamura, K.; Saeki, A.;
Komatsu, H. A New Efficient Method for S-CH2-S Bond
Formation and Its Application to a Djenkolic Acid-Containing
Cyclic Enkephalin Analog. Bull. Chem. Soc. J pn. 1999, 72, 829-
838 and references therein.
(20) Lindman, S.; Lindeberg, G.; Gogoll, A.; Nyberg, F.; Karle´n, A.;
Hallberg, A. Synthesis, Receptor Binding Affinities and Confor-
mational Properties of Cyclic Methylenedithioether Analogues
of Angiotensin II. Bioorg. Med. Chem. 2001, 9, 763-772.
(21) Walker, M. A.; J ohnson, T. General Method for the Synthesis of
Cyclic Peptidomimetic Compounds. Tetrahedron Lett. 2001, 42,
5801-5804.
(22) Pawlak, D.; Oleszczuk, M.; Wo´jcik, J .; Pachulska, M.; Chung,
N. N.; Schiller, P. W.; Izdebski, J . Highly Potent Side-Chain to
Side-Chain Cyclized Enkephalin Analogues Containing a Car-
bonyl Bridge: Synthesis, Biology and Conformation. J . Pept. Sci.
2001, 7, 128-140.
(23) Alexander McNamara, L. M.; Andrews, M. J . I.; Mitzel, F.;
Siligardi, G.; Tabor, A. B. Peptides Constrained by an Aliphatic
Linkage between Two CR Sites: Design, Synthesis, and Unex-
pected Conformational Properties of an i,(i + 4)-Linked Peptide.
J . Org. Chem. 2001, 66, 4585-4594.
(24) Sugg, E. E.; Dolan, C. A.; Patchett, A. A.; Chang, R. S. L.; Faust,
K. A.; Lotti, V. J . Cyclic Disulfide Analogs of [Sar1,Ile8]-
Angiotensin II. Pept.: Chem., Struct. Biol., Proc. Am. Pept.
Symp., 11th 1990, 305-306.
(25) Spear, K. L.; Brown, M. S.; Reinhard, E. J .; McMahon, E. G.;
Olins, G. M.; Palomo, M. A.; Patton, D. R. Conformational
Restriction of Angiotensin II: Cyclic Analogs Having High
Potency. J . Med. Chem. 1990, 33, 1935-1940.
(26) Plucinska, K.; Kataoka, T.; Yodo, M.; Cody, W. L.; He, J . X.;
Humblet, C.; Lu, G. H.; Lunney, E.; Major, T. C.; Panek, R. L.;
Schelkun, P.; Skeean, R.; Marshall, G. R. Multiple Binding
Modes for the Receptor-Bound Conformations of Cyclic AII
Agonists. J . Med. Chem. 1993, 36, 1902-1913.
(27) Matsoukas, J . M.; Hondrelis, J .; Agelis, G.; Barlos, K.; Gatos,
D.; Ganter, R.; Moore, D.; Moore, G. J . Novel Synthesis of Cyclic
Amide-Linked Analogues of Angiotensins II and III. J . Med.
Chem. 1994, 37, 2958-2969.
(28) Vlahakos, D.; Matsoukas, J . M.; Ancans, J .; Moore, G. J .;
Iliodromitis, E. K.; Marathias, K. P.; Kremastinos, D. T. Biologi-
cal Activity of the Novel Cyclic Angiotensin II Analog [Sar1,Lys3-
Glu5]ANG II. Lett. Pept. Sci. 1996, 3, 191-194.
(33) Polevaya, L.; Mavromoustakos, T.; Zoumboulakis, P.; Grdado-
lnik, S. G.; Roumelioti, P.; Giatas, N.; Mutule, I.; Keivish, T.;
Vlahakos, D. V.; Iliodromitis, E. K.; Kremastinos, D. T.; Mat-
soukas, J . Synthesis and Study of a Cyclic Angiotensin II
Antagonist Analogue Reveals the Role of π*-π* Interactions in
the C-Terminal Aromatic Residue for Agonist Activity and Its
Structure Resemblance with AT1 Non-peptide Antagonists.
Bioorg. Med. Chem. 2001, 9, 1639-1647.
(34) Samanen, J . M.; Peishoff, C. E.; Keenan, R. M.; Weinstock, J .
Refinement of a Molecular Model of Angiotensin II (AII) Em-
ployed in the Discovery of Potent Nonpeptide Antagonists.
Bioorg. Med. Chem. Lett. 1993, 3, 909-914.
(35) Nikiforovich, G. V.; Marshall, G. R. Three-Dimensional Recogni-
tion Requirements for Angiotensin Agonists: A Novel Solution
for an Old Problem. Biochem. Biophys. Res. Commun. 1993, 195,
222-228.
(36) Nikiforovich, G. V.; Kao, J . L.-F.; Plucinska, K.; Zhang, W. J .;
Marshall, G. R. Conformational Analysis of Two Cyclic Analogs
of Angiotensin: Implications for the Biologically Active Confor-
mation. Biochemistry 1994, 33, 3591-3598.
(37) J oseph, M.-P.; Maigret, B.; Scheraga, H. A. Proposals for the
Angiotensin II Receptor-Bound Conformation by Comparative
Computer Modeling of AII and Cyclic Analogs. Int. J . Pept.
Protein Res. 1995, 46, 514-526.
(38) Balodis, J .; Golbraikh, A. Conformational Analysis of Cyclic
Angiotensin II Analogs. Lett. Pept. Sci. 1996, 3, 195-199.
(39) Carpenter, K. A.; Wilkes, B. C.; Schiller, P. W. The Octapeptide
Angiotensin II Adopts a Well-Defined Structure in a Phospho-
lipid Environment. Eur. J . Biochem. 1998, 251, 448-453.
(40) Boucard, A. A.; Wilkes, B. C.; Laporte, S. A.; Escher, E.;
Guillemette, G.; Leduc, R. Photolabeling Identifies Position 172
of the Human AT1 Receptor as a Ligand Contact Point: Recep-
tor-Bound Angiotensin II Adopts an Extended Structure. Bio-
chemistry 2000, 39, 9662-9670.
(41) Eyre, D. R.; Paz, M. A.; Gallop, P. M. Cross-Linking in Collagen
and Elastin. Annu. Rev. Biochem. 1984, 53, 717-748.
(42) Do¨lz, R.; Heidemann, E. Allysine Peptides and Derivatives. Int.
J . Pept. Protein Res. 1988, 32, 307-320.
(43) Do¨lz, R.; Heidemann, E. Reactivity of the Allysine Aldehyde
Group. Connect. Tissue Res. 1989, 18, 255-268.
(44) Ojima, I.; Tzamarioudaki, M.; Eguchi, M. New and Efficient
Route to Pipecolic Acid Derivatives by Means of Rh-Catalyzed
Intramolecular Cyclohydrocarbonylation. J . Org. Chem. 1995,
60, 7078-7079.
(45) Ben-Ishai, D. Reaction of Acylamino Acids with Paraformalde-
hyde. J . Am. Chem. Soc. 1957, 79, 5736-5738.
(46) Mueller, L. P.E.COSY, a Simple Alternative to E.COSY. J . Magn.
Reson. 1987, 72, 191-196.
(47) Braunschweiler, L.; Ernst, R. R. Coherence Transfer by Isotropic
Mixing: Application to Proton Correlation Spectroscopy. J .
Magn. Reson. 1983, 53, 521-528.
(48) Bothner-By, A. A.; Stephens, R. L.; Lee, J .-m.; Warren, C. D.;
J eanloz, R. W. Structure Determination of a Tetrasaccharide:
Transient Nuclear Overhauser Effects in the Rotating Frame.
J . Am. Chem. Soc. 1984, 106, 811-813.
(49) Wu¨thrich, K. NMR of Proteins and Nucleic Acids; J ohn Wiley
& Sons: New York, 1986.
(50) Still, W. C.; Tempczyk, A.; Hawley, R. C.; Hendrickson, T.
Semianalytical Treatment of Solvation for Molecular Mechanics
and Dynamics. J . Am. Chem. Soc. 1990, 112, 6127-6129.
(51) Mohamadi, F.; Richards, N. G. J .; Guida, W. C.; Liskamp, R.;
Lipton, M.; Caufield, C.; Chang, G.; Hendrickson, T.; Still, W.
C. MacroModelsAn Integrated Software System for Modeling
Organic and Bioorganic Molecules Using Molecular Mechanics.
J . Comput. Chem. 1990, 11, 440-467.
(52) Nikiforovich, G. V.; Karle´n, A.; Hallberg, A. 3D Model for
“Receptor-Bound” Conformation at the AT-1 Receptors of An-
giotensin II Analogs Cyclized in Position 3 and 5. Manuscript
in preparation.
(53) Nemethy, G.; Pottle, M. S.; Scheraga, H. A. Energy Parameters
in Polypeptides. 9. Updating of Geometrical Parameters, Non-
bonded Interactions, and Hydrogen Bond Interactions for the
Naturally Occurring Amino Acids. J . Phys. Chem. 1983, 87,
1883-1887.
(54) Dunfield, L. G.; Burgess, A. W.; Scheraga, H. A. Energy
Parameters in Polypeptides. 8. Empirical Potential Energy
Algorithm for the Conformational Analysis of Large Molecules.
J . Phys. Chem. 1978, 82, 2609-2616.
(29) Zhang, W.-J .; Nikiforovich, G. V.; Pe´rodin, J .; Richard, D. E.;
Escher, E.; Marshall, G. R. Novel Cyclic Analogs of Angiotensin
II with Cyclization between Positions 5 and 7: Conformational
and Biological Implications. J . Med. Chem. 1996, 39, 2738-2744.
(30) J ohannesson, P.; Lindeberg, G.; Tong, W.; Gogoll, A.; Karle´n,
A.; Hallberg, A. Bicyclic Tripeptide Mimetics with Reverse Turn
Inducing Properties. J . Med. Chem. 1999, 42, 601-608.
(31) J ohannesson, P.; Lindeberg, G.; Tong, W.; Gogoll, A.; Synner-
gren, B.; Nyberg, F.; Karle´n, A.; Hallberg, A. Angiotensin II
Analogues Encompassing 5,9- and 5,10-Fused Thiazabicycloal-
kane Tripeptide Mimetics. J . Med. Chem. 1999, 42, 4524-4537.
(32) Matsoukas, J . M.; Polevaya, L.; Ancans, J .; Mavromoustakos,
T.; Kolocouris, A.; Roumelioti, P.; Vlahakos, D. V.; Yamdagni,
R.; Wu, Q.; Moore, G. J . The Design and Synthesis of a Potent
Angiotensin II Cyclic Analogue Confirms the Ring Cluster
Receptor Conformation of the Hormone Angiotensin II. Bioorg.
Med. Chem. 2000, 8, 1-10.
(55) Dudley, D. T.; Panek, R. L.; Major, T. C.; Lu, G. H.; Bruns, R.
F.; Klinkefus, B. A.; Hodges, J . C.; Weishaar, R. E. Subclasses
of Angiotensin II Binding Sites and Their Functional Signifi-
cance. Mol. Pharmacol. 1990, 38, 370-377.
(56) Hanessian, S.; McNaughton-Smith, G.; Lombart, H.-G.; Lubell,
W. D. Design and Synthesis of Conformationally Constrained
Amino Acids as Versatile Scaffolds and Peptide Mimetics.
Tetrahedron 1997, 53, 12789-12854 and references therein.