LETTER
Regioselective Pd-Catalysed Arylation of 4-Bromo-6-chloro-3-phenylpyridazine
225
rable reactivity. In order to assess the scope of our new ap- carbonyl function in Suzuki arylations. This procedure is
proach, we performed several experiments using a superior to existing processes and has allowed us to ac-
variable excess of the boronic acid (1.1-1.3 equivalent), a cess, in a clearly shorter synthetic sequence, several phar-
process that gave the 4-arylated-6-chloropyridazines 3 in macologically useful pyridazine derivatives.
moderate yields (70-85%). The use of a large excess of the
organoboron compound leads to reaction mixtures arising
References
from the formation of mono- as well as diarylpyridazines,
1
(1) For the previous paper in this series, see: Efficient and
selective deprotection of phar-macologically useful 2-
MOM-pyridazinones using Lewis acids in: Sotelo, E.;
Coelho, A.; Raviña, E. Tetrahedron Lett.; 2001, 43, 8633.
(2) (a) Frank, H.; Heinisch, G. In Pharmacologically Active
Pyridazines Part 1, Progressing Medicinal Chemistry; Ellis,
G. P.; West, G. B., Eds.; Elsevier: Amsterdam, 1990, 271.
(b) Frank, H.; Heinisch, G. In Pharmacologically Active
Pyridazines Part 2, Progress in Medicinal Chemistry, Chap.
29; Ellis, G. P.; Luscombe, D. K., Eds.; Elsevier:
Amsterdam, 1992, 141.
(3) Rohr, M.; Toussaint, D.; Chayer, S.; Mann, A.; Suffer, J.;
Wermuth, W. G. Heterocycles 1996, 43, 1459.
(4) Enguehard, C.; Hervet, M.; Allouchi, H.; Debouzy, J. C.;
Gueiffier, A. Synthesis 2001, 4, 595.
(5) (a) Turck, A.; Mojovic, L.; Queguiner, G. Bull. Soc. Fr.
1993, 130, 488. (b) Konno, S.; Sagi, M.; Siga, F.;
Yamanaka, H. Heterocycles 1992, 34, 225.
as evidenced by TLC, H NMR spectroscopy and mass
spectrometry.
The total regioselectivity obtained in the biaryl cross-cou-
pling reaction on 2 is not wholly expected considering the
high reactivity previously shown by the C-Cl bond at po-
sition 6 of the pyridazine nucleus in the Pd-insertion pro-
cess.13,14 We can explain this selectivity by considering
the fact that, although oxidative addition into the C-Cl
bond occurs easily, the energy involved in this transfor-
mation is even higher than in the case of a similar process
involving the C-Br bond. It is this major energy difference
that allows the use the 6-chloropyridazines as a masking
group for the carbonyl moiety in palladium-assisted cross-
coupling reactions of 5-bromo-3(2H)-pyridazinones. The
selective arylation at the 4-position of 4-bromo-6-chloro-
3-phenylpyridazine is considered to be synthetically use-
ful because the chloro-substituent at position 6 of the py-
ridazine ring can be easily converted to give a wide range
of functionalities.
(6) (a) Draper, T. L.; Bailey, T. R. J. Org. Chem. 1995, 60, 748.
(b) Oshawa, A.; Abe, Y.; Igeta, H. Chem. Pharm. Bull. 1980,
28, 3488.
(7) Guery, S.; Parrot, I.; Rival, Y.; Wermuth, C. G. Synthesis
2001, 5, 699.
Once the coupling conditions had been optimised we suc-
cessfully completed the transformation of 6-chloropy-
ridazines 321 into 3(2H)-pyridazinones 4,23 6-
aminopyridazines 5,24 6-hydrazynopyridazines 625 or py-
ridazines 726 following the previously described proce-
dures (Scheme 3).16 The application of this procedure to
other dihalopyridazines is currently under investigation.
We are also applying this methodology to the preparation
of chemical libraries of compounds 3-7 using combinato-
rial techniques.
(8) Krajsovszky, G.; Matyus, P.; Riedl, Z.; Csanyi, D.; Hajos, G.
Heterocycles 2001, 55, 1105.
(9) Li, J. J.; Gribble, G. W. Palladium in Heterocyclic
Chemistry; Elsevier: Amsterdam, 2000, 3.
(10) Bessard, Y.; Roduit, J. P. Tetrahedron 1999, 55, 393.
(11) Minato, A.; Suzuki, K.; Tamao, K.; Kumada, M. J. Chem.
Soc., Chem. Commun. 1984, 511.
(12) Tilley, J. W.; Zawoiski, S. J. Org. Chem. 1988, 53, 386.
(13) (a) Komrlj, J.; Maes, B. U. W.; Lemière, G. L. F.; Haemers,
A. Synlett 2000, 11, 1581. (b) Maes, B. U. W.; Lémiere, G.
L. F.; Domminisse, R.; Augusyns, K.; Haemers, A.
Tetrahedron 2000, 56, 1777.
(14) Parrot, I.; Rival, Y.; Wermuth, C. G. Synthesis 1999, 7,
1163.
(15) Trecourt, F.; Turck, A.; Plé, N.; Paris, A.; Quéguiner, G. J.
Heterocyclic Chem. 1995, 32, 1057.
(16) Brown, D. J. In The Pyridazines I, Chemistry of Heterocyclic
Compounds, Vol. 56; Taylor, E. C.; Wipf, P., Eds.; Wiley:
New York, 2000, 23.
Cl
O
NHR
H
AcOH
RNH2
N
N
N
N
N
N
Ar
Ar
Ar
Ph
Ph
Ph
5
4
3
HCOONH4
Pd/C
NH2NH2
(17) Estévez, I.; Coelho, A.; Raviña, E. Synthesis 1999, 9, 1666.
(18) Coelho, A.; Sotelo, E.; Estevez, I.; Raviña, E. Synthesis
2001, 6, 871.
(19) 4-Bromo-6-chloro-3-phenylpyridazine 2: 89%, mp: 111-112
°C (dec.), iso-PrOH. IR (KBr): 1590, 1480 cm-1. 1H NMR
(DMSO-d6, 300 MHz): 8.44 (s, 1 H, CH), 7.70 (m, 2 H,
Aromatics), 7.54 (m, 3 H, Aromatics) ppm.
H2N NH
N
N
N
N
Ar
Ar
Ph
Ph
7
6
(20) Suzuki, A. In Recent Advances in the Cross-coupling
Reactions of Organoboron Deri-vatives with Organic
Electrophiles, Perspectives in Organopalladium Chemistry
for the XXI Century; Tsuji, J., Ed.; Elsevier: Amsterdam,
1999, 145.
(21) Cross-coupling Reactions, General Procedure: 5-Bromo-3-
chloro-6-phenylpyridazine 2 (0.25 g, 0.93 mmol) was mixed
with the arylboronic acid (0.93 mmol), Pd(PPh3)4 (5 mg,
0.006 mmol) and Na2CO3 (0.49 g, 5.08 mmol) in 30 mL of a
3:1 mixture of DME–H2O. The mixture was flushed with
Scheme 3
In summary, we have developed a practical, efficient and
regioselective palladium-assisted procedure based on the
different reactivity of halides toward oxidative addition of
palladium species’. The chemoselectivity observed dem-
onstrates the synthetic usefulness of the 6-chloropy-
ridazine moiety as a convenient masking group for the
Synlett 2002, No. 2, 223–226 ISSN 0936-5214 © Thieme Stuttgart · New York