M. B. Andrus et al. / Tetrahedron Letters 43 (2002) 1789–1792
1791
Table 2. Protection and auxiliary removal with aldol
adducts 9
2. syn Versions: (a) Evans, D. A.; Bender, S. L.; Morris, J.
J. Am. Chem. Soc. 1988, 110, 2506–2513; (b) Ku, T. W.;
Kondrad, K. H.; Gleason, J. G. J. Org. Chem. 1989, 54,
3487–3489; (c) Andrus, M. B.; Schreiber, S. L. J. Am.
Chem. Soc. 1993, 115, 10420–10421; (d) Evans, D. A.;
Barrow, J. C.; Leighton, J. L.; Robichaud, A. J.; Sefkow,
M. J. Am. Chem. Soc. 1994, 116, 12111–12112; (e) Crim-
mins, M. T.; Choy, A. L. J. Org. Chem. 1997, 62,
7548–7549; (f) Crimmins, M. T.; Choy, A. L. J. Am.
Chem. Soc. 1999, 121, 5653–5660; (g) Haight, D.; Birrell,
H. C.; Cantello, B. C. C.; Eggleston, D. S.; Haltiwanger,
R. C.; Hindley, R. M.; Ramaswany, A.; Stevens, N. C.
Tetrahedron: Asymmetry 1999, 10, 1353–1367. anti: (h)
Evans, D. A.; Kaldor, S. W.; Jones, T. K.; Clardy, J.;
Stout, T. J. J. Am. Chem. Soc. 1990, 112, 7001–7011; (i)
Evans, D. A.; Gage, J. R.; Leighton, J. L.; Kim, A. S. J.
Org. Chem. 1992, 57, 1961–1963; (j) Evans, D. A.; Weber,
A. E. J. Am. Chem. Soc. 1986, 108, 6757–6761; (k) Li, Z.;
Wu, R.; Michalczyk, R.; Dunlap, R. B.; Odom, J. D.;
Silks, L. A., III J. Am. Chem. Soc. 2000, 122, 386–387.
3. Andrus, M. B.; Soma Sekhar, B. B. V.; Turner, T. M.;
Meredith, E. L. Tetrahedron Lett. 2001, 42, 7197–7201.
4. (a) Kobayashi, S.; Kawasuji, T. Tetrahedron Lett. 1994,
35, 3329–3332; (b) Kobayashi, S.; Hayashi, T. J. Org.
Chem. 1995, 60, 1098–1101; (c) Gennari, C.; Vulpetti, A.;
Pain, G. Tetrahedron 1997, 53, 5909–5914.
formed by protecting the b-hydroxyl with two groups,
either as a methyl ether using Meerwein’s salt or as a
tert-butyldimethylsilyl (TBS) ether (Table 2). The lac-
tone was then ring opened to the methyl ester 11 using
sodium methoxide (0.01 equiv.) in a 1:1 methanol–THF
mixture with stirring overnight. Ceric ammonium
nitrate (CAN, 2.5 equiv.) was then used in a 9:1 aceto-
nitrile–water mixture at 0°C for 2 h to cleave the
activated 4-methoxybenzyl ether generating hydroxy
ester product together with two equivalents of 4-
methoxybenzaldehyde. Chromatography then gave
pure differentially protected anti diol ester products in
good overall yield for the three-step sequence. Other
substrates and protecting groups are expected to give
similar results.
5. List, B.; Lerner, R. A.; Barbas, C. F. J. Am. Chem. Soc.
2000, 122, 2395–2396.
6. (a) Wang, L.; Sharpless, K. B. J. Am. Chem. Soc. 1992,
114, 7568–7569; (b) Kolb, H. C.; VanNieuwenhze, M. S.;
Sharpless, K. B. Chem. Rev. 1994, 94, 2483–2523.
7. (a) Andrus, M. B.; Soma Sekhar, B. B. V.; Meredith, E.
L.; Dalley, N. K. Org. Lett. 2000, 2, 3035–3037; (b)
Andrus, M. B.; Meredith, E. L.; Soma Sekhar, B. B. V.
Org. Lett. 2001, 3, 259–262. For other cyclic glycolate
aldol approaches, see: (c) Seebach, D.; Naef, R. Helv.
Chim. Acta 1981, 64, 2704–2709; (d) Pearson, W. H.;
Cheng, M.-C. J. Org. Chem. 1987, 52, 3176–3178; (e)
Comins, D. L.; Kuethe, J. T.; Lakner, F. J. J. Am. Chem.
Soc. 1999, 121, 2651–2652; (f) Evans, D. A.; Hu, E.;
Tedrow, J. S. Org. Lett. 2001, 3, 3133–3136; (g) Dixon,
D. J.; Ley, S. V.; Polara, A.; Sheppard, T. Org. Lett.
2001, 3, 3749–3752.
8. Preparation of trans-4,4%-dimethoxy-stilbene 6. Diethyl
4-methoxybenzylphosphonate 5 (10 g, 38.7 mmol) in
DMF (96.8 mL) was treated with NaOMe (6.27 g, 116
mmol) at rt for 20 min and p-anisaldehyde 4 (5.66 mL,
46.5 mmol) was added. The solution was allowed to stir
for an additional 30 min, then warmed to 100°C for 7 h.
The reaction was cooled to rt and stirred overnight then
the reaction was quenched with cold H2O. White crystals
were collected and washed with cold acetone (8.75 g, 93%
yield); mp 211–214°C; Rf=0.43 (30% EtOAc/hexanes);
1H NMR (300 Hz, CDCl3) l 7.44–7.41 (m, 4H), 6.93–
6.87 (m, 6H), 3.83 (s, 6H); 13C NMR (CDCl3) l 159.3,
130.7, 127.7, 126.4, 114.4, 100.3, 55.6; HRMS EI (M+Na)
calcd for C16H16O2 240.1150, found 240.1152.
The new 5S,6S-bis-5,6-(4-methoxyphenyl)-2-dioxanone,
readily made in two steps using catalytic AD-mix-a
reagent and a simple stilbene, produces anti glycolate
aldol products with a wide range of aldehydes. The
auxiliary is readily removed with CAN following pro-
tection to give synthetically useful anti diol intermedi-
ates. Efforts to further improve the selectivity and
apply the auxiliary to other transformations are
underway.
Acknowledgements
We wish to thank the National Institutes of Health
(GM57275) and the Brigham Young University Cancer
Center for funding and Dr. Bruce Jackson for mass
spectroscopy and Dr. Li Du for NMR assistance.
References
9. Mp 102–105°C, [h]D=−112 (c 1.50, CH2Cl2).
10. Mosher, H. S.; Dale, J. A. J. Org. Chem. 1970, 35,
4002–4008.
11. (a) Burke, S. D.; Sametz, G. M. Org. Lett. 1999, 1, 71–74;
(b) David, S.; Thieffry, A.; Veyrieres, A. J. Chem. Soc.,
Perkin Trans. 1 1981, 1796–1798.
1. (a) Gennari, C. In Comprehensive Organic Synthesis;
Trost, B. M., Fleming, I., Eds.; Pergamon Press: New
York, 1991; Vol. 2, Chapter 2.4; (b) Cameron, J. C.;
Paterson, I. Org. React. 1997, 51, 1.