Quinolone and Acridone Synthases from Citrus Microcarpa
Sugio, S., Kohno, T., and Abe, I. (2011) Synthesis of unnatural novel alka-
lowed by the C–N bond formation to generate the acridone
scaffold.
Finally, despite the high sequence identity with C. micro-
loid scaffolds by exploiting plant polyketide synthase. Proc. Natl. Acad. Sci.
U.S.A. 108, 13504–13509
7. Hayashi, H., Miwa, Y., Ichikawa, S., Yoda, N., Miki, I., Ishii, A., Kono, M.,
Yasuzawa, T., and Suzuki, F. (1993) 5-HT3 receptor antagonists. 2,4-Hy-
droxy-3-quinolinecarboxylic acid derivatives. J. Med. Chem. 36, 617–626
8. Dittmer, D. C., Li, Q., and Avilov, D. V. (2005) Synthesis of coumarins,
4-hydroxycoumarins, and 4-hydroxyquinolinones by tellurium-triggered
cyclizations. J. Org. Chem. 70, 4682–4686
carpa ACS and R. graveolens ACS, both accepting 4-couma-
royl-CoA as the starter substrate to produce chalcone, the pre-
viously reported acridone/quinolone-producing A. marmelos
QNS does not produce chalcone from 4-coumaroyl-CoA,
although these three enzymes share the simultaneous substitu-
tions of the CHS’s conserved active site residues Thr-132, Ser-
133, and Phe-265 with Ser, Ala, and Val, respectively. Site-di-
rected mutagenesis studies of R. graveolens ACS and A.
marmelos QNS indicated that the three residues play important
roles in the substrate and product specificities of the two
enzymes (12, 15). For example, the S132T/A133S double
mutant of A. marmelos QNS produced chalcone from 4-cou-
maroyl-CoA, whereas the S132T/A133S/V265F triple mutant
lost the enzyme activity, and no longer accepted the coumaroyl
starter to yield any products (12). However, the S132T/A133S/
V265F triple mutation of R. graveolens ACS caused full conver-
sion into a functionally distinct chalcone-forming enzyme (15).
These observations suggested that subtle structural differences
exist in the active site architectures of these three acridone-
producing enzymes.
9. Kelly, J. X., Smilkstein, M. J., Brun, R., Wittlin, S., Cooper, R. A., Lane, K. D.,
Janowsky, A., Johnson, R. A., Dodean, R. A., Winter, R., Hinrichs, D. J., and
Riscoe, M. K. (2009) Discovery of dual function acridones as a new anti-
malarial chemotype. Nature 459, 270–273
10. Lukacin, R., Springob, K., Urbanke, C., Ernwein, C., Schröder, G.,
Schröder, J., and Matern, U. (1999) Native acridone synthases I and II from
Ruta graveolens L. form homodimers. FEBS Lett. 448, 135–140
11. Springob, K., Lukacin, R., Ernwein, C., Gröning, I., and Matern, U. (2000)
Specificities of functionally expressed chalcone and acridone synthases
from Ruta graveolens. Eur. J. Biochem. 267, 6552–6559
12. Resmi, M. S., Verma, P., Gokhale, R. S., and Soniya, E. V. (2013) Identifi-
cation and characterization of a type III polyketide synthase involved in
quinolone alkaloid biosynthesis from Aegle marmelos correa. J. Biol.
Chem. 288, 7271–7281
13. Jez, J. M., Bowman, M. E., and Noel, J. P. (2002) Expanding the biosynthetic
repertoire of plant type III polyketide synthases by altering starter mole-
cule specificity. Proc. Natl. Acad. Sci. U.S.A. 99, 5323–5324
14. Lukacin, R., Schreiner, S., Silber, K., and Matern, U. (2005) Starter sub-
strate specificities of wild-type and mutant polyketide synthases from Ru-
taceae. Phytochemistry 66, 277–284
In conclusion, C. microcarpa QNS is a novel type III PKS that
produces the diketide quinolone by the one-step condensation
of N-methylanthraniloyl-CoA and malonyl-CoA, whereas C.
microcarpa ACS is a multifunctional PKS that produces not
only acridone, but also chalcone, benzophenone, and phloro-
glucinol. The x-ray crystal structures of C. microcarpa QNS and
ACS revealed the wide active site entrances of both enzymes,
which facilitate the binding of the bulky N-methylanthraniloyl-
CoA starter. The active site cavity of C. microcarpa QNS is
significantly smaller than that of ACS, which leads to the spe-
cific production of the quinolone scaffold, whereas C. micro-
carpa ACS utilizes a large cavity to yield the tetraketide acri-
done, by employing an active site cavity and catalytic machinery
similar to those of CHS. These results have provided the first
structural bases for the production of the anthranilate-derived
quinolone and acridone alkaloids by the type III PKSs. These
findings will enable further engineering of the enzymes to cre-
ate novel, structurally distinct, and biologically active molecu-
lar scaffolds for drug discovery.
15. Lukacin, R., Schreiner, S., and Matern, U. (2001) Transformation of acri-
done synthase to chalcone synthase. FEBS Lett. 508, 413–417
16. Abe, I., Abe, T., Wanibuchi, K., and Noguchi, H. (2006) Enzymatic forma-
tion of quinolone alkaloids by a plant type III polyketide synthase. Org.
Lett. 8, 6063–6065
17. Liu, B., Falkenstein-Paul, H., Schmidt, W., and Beerhues, L. (2003) Benzo-
phenone synthase and chalcone synthase from Hypericum androsaemum
cell cultures: cDNA cloning, functional expression, and site-directed mu-
tagenesis of two polyketide synthases. Plant J. 34, 847–855
18. Abe, I., Morita, H., Nomura, A., and Noguchi, H. (2000) Substrate speci-
ficity of chalcone synthase: enzymatic formation of unnatural polyketides
from synthetic cinnamoyl-CoA analogues. J. Am. Chem. Soc. 122,
11242–11243
19. Abe, I., Takahashi, Y., Morita, H., and Noguchi, H. (2001) Benzalacetone
synthase. A novel polyketide synthase that plays a crucial role in the bio-
synthesis of phenyl-butanones in Rheum palmatum. Eur. J. Biochem. 268,
3354–3359
20. Abe, I., Utsumi, Y., Oguro, S., Morita, H., Sano, Y., and Noguchi, H. (2005)
A plant type III polyketide synthase that produces pentaketide chromone.
J. Am. Chem. Soc. 127, 1362–1363
21. Abe, I., Oguro, S., Utsumi, Y., Sano, Y., and Noguchi, H. (2005) Engineered
biosynthesis of plant polyketides: chain length control in an octaketide-
producing plant type III polyketide synthase. J. Am. Chem. Soc. 127,
12709–12716
REFERENCES
1. Austin, M. B., and Noel, J. P. (2003) The chalcone synthase superfamily of
type III polyketide synthases. Nat. Prod. Rep. 20, 79–110
2. Abe, I., and Morita, H. (2010) Structure and function of the chalcone
synthase superfamily of plant type III polyketide syntheses. Nat. Prod. Rep.
27, 809–838
22. Otwinowski, Z., and Minor, W. (1997) Processing of x-ray diffraction data
collected in oscillation mode. Methods Enzymol. 276, 307–326
23. Vagin, A., and Teplyakov, A. (2010) Molecular replacement with
MOLREP. Acta Crystallogr. D Biol. Crystallogr. 66, 22–25
3. Abe, I., Watanabe, T., and Noguchi, H. (2004) Enzymatic formation of
long-chain polyketide pyrones by plant type III polyketide synthases. Phy-
tochemistry 65, 2447–2453
24. Winn, M. D., Ballard, C. C., Cowtan, K. D., Dodson, E. J., Emsley, P., Evans,
P. R., Keegan, R. M., Krissinel, E. B., Leslie, A. G., McCoy, A., McNicholas,
S. J., Murshudov, G. N., Pannu, N. S., Potterton, E. A., Powell, H. R., Read,
R. J., Vagin, A., and Wilson, K. S. (2011) Overview of the CCP4 suite and
current developments. Acta Crystallogr. D Biol. Crystallogr. 67, 235–242
25. Emsley, P., and Cowtan, K. (2004) Coot: model-building tools for molec-
ular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132
4. Wanibuchi, K., Zhang, P., Abe, T., Morita, H., Kohno, T., Chen, G., No-
guchi, H., and Abe, I. (2007) An acridone-producing novel multifunctional
type III polyketide synthase from Huperzia serrata. FEBS J. 274,
1073–1082
5. Wakimoto, T., Mori, T., Morita, H., and Abe, I. (2011) Cytotoxic tetramic 26. Adams, P. D., Afonine, P. V., Bunkóczi, G., Chen, V. B., Davis, I. W., Echols,
acid derivative produced by a plant type-III polyketide synthase. J. Am.
Chem. Soc. 133, 4746–4749
N., Headd, J. J., Hung, L. W., Kapral, G. J., Grosse-Kunstleve, R. W., Mc-
Coy, A. J., Moriarty, N. W., Oeffner, R., Read, R. J., Richardson, D. C.,
Richardson, J. S., Terwilliger, T. C., and Zwart, P. H. (2010) PHENIX: a
6. Morita, H., Yamashita, M., Shi, S. P., Wakimoto, T., Kondo, S., Kato, R.,
OCTOBER 4, 2013•VOLUME 288•NUMBER 40
JOURNAL OF BIOLOGICAL CHEMISTRY 28857