C O M M U N I C A T I O N S
Table 1. Coupling Reactions of Glucopyranosyl Isoxazoline 3a
Scheme 4. Coupling Reactions with Di- and Triglycosyl Azides
glycosyl azides as a starting material. Studies to extend this
methodology to the synthesis of nephritogenoside, 2-N-acetamido-
2-deoxy-â-glucosylamides, and to solid-phase synthesis are under-
way and will be reported in due course.
Acknowledgment. We thank the National Cancer Institute (CA-
82169) for generous financial support. We also thank Dr. Yiu-Fai
Lam (NMR) and Mr. Noel Whittaker (mass spectrometry) for their
assistance in obtaining analytical data. This manuscript is dedicated
to our colleague Robert Dorfman on the occasion of his 60th
birthday.
a All reactions were performed in 1,2-dichloroethane in the presence of
4 Å molecular sieves. All acylation reactions were run for 24 h. A listing
of all acylating agents and reaction conditions investigated is summarized
in the table in the Supporting Information. b Used in acylation step. Additives
were added after reagents. c For acylation step. d Isolated yield (>95%).
1
e Determined by H NMR spectroscopy or HPLC analysis.
Scheme 3. Synthesis of R-N-Aspartyl Glucosylamine 8
Supporting Information Available: Extended version of table,
experimental procedures, and spectral data of all new compounds (PDF).
This material is available free of charge via the Internet at http://
pubs.acs.org.
References
(1) (a) Varki, A. Glycobiology 1993, 3, 97-130. (b) Dwek, R. A. Chem.
ReV. 1996, 96, 683-720. (c) Kobata, A. Glycoconjugate J. 2000, 17, 443-
464. (d) Glycoproteins and Disease; Montreuil, J., Vliegenthart, J. F. G.,
Schachter, H., Eds.; Elsevier: Amsterdam, 1996. (e) Herzner, H.; Reipen,
T.; Schultz, M.; Kunz, H. Chem. ReV. 2000, 100, 4495-4537.
(2) Polt, R.; Porreca, F.; Szabo, L. Z.; Bilsky, E. J.; Davis, P.; Abbruscato,
T. J.; Davis, T. P.; Horvath, R.; Yamamura, H. I.; Hruby, V. J. Proc.
Natl. Acad. Sci. U.S.A. 1994, 91, 7114-7118.
to determine the optimum acylating reagents for the reaction. The
results are summarized in Table 1.
Acylation of isoxazoline 3 (formed in situ) with the reactive acid
chloride gave the R-adduct in a highly stereoselective process (entry
1). However, acid chlorides were inappropriate reagents for general
glycopeptide synthesis, and alternative derivatives were investi-
gated.9 Attempts to utilize N-hydroxysuccinimidyl (entry 2) or
pentafluorophenyl esters in the acylation protocol met with mixed
success because the yields and the R/â selectivity were poor. The
thiopyridyl ester (entry 3), on the other hand, gave the R-adduct
with high selectivity. By adding metal salts9 to coordinate the
pyridyl moiety, and presumably increasing the electrophilicity of
the reagent, we accomplished the coupling reaction at room
temperature to give exclusiVely the R-glucopyranosyl adduct in
excellent yield (entry 4).
The generality of the thiopyridyl coupling methodology was
demonstrated by the synthesis of R-glucopyranosyl asparagine
derivative 8. In situ isoxazoline formation by treatment of azide 1
was followed by acylation with the thiopyridyl ester of N-Z-
protected aspartic benzyl ester in the presence of CuCl2‚2H2O to
give exclusively the R-asparagine adduct (Scheme 3).
(3) (a) Wieland, F.; Heitzer, R.; Schaefer, W. Proc. Natl. Acad. Sci. U.S.A.
1983, 80, 5470-5474. (b) Paul, G.; Lottspeich, F.; Wieland, F. J. Biol.
Chem. 1986, 261, 1020-1024.
(4) (a) Shibata, S.; Miura, K. J. Biochem. 1987, 89, 1737-1749. (b) Shibata,
S.; Takeda, T.; Natori, Y. J. Biol. Chem. 1988, 263, 12483-12485. (c)
Takeda, T.; Sawaki, M.; Ogihara, Y.; Shibata, S. Chem. Pharm. Bull.
1989, 37, 54-56.
(5) (a) Teshima, T.; Nakajima, K.; Takahashi, M.; Shiba, T. Tetrahedron Lett.
1992, 33, 363-366. (b) Takeda, T.; Kojima, K.; Ogihara, Y. Carbohydr.
Res. 1993, 243, 79-89. (c) Zhang, H.; Wang, Y.; Thu¨rmer, R.;
Al-qawasmeh, R. A.; Voelter, W. Pol. J. Chem. 1999, 73, 101-115 and
references therein. (d) Ratcliffe, A. J.; Konradsson, P.; Fraser-Reid, B. J.
Am. Chem. Soc. 1990, 112, 5665-5667. (e) Nair, L. G.; Fraser-Reid, B.;
Szardenings, A. K. Org. Lett. 2001, 3, 317-319 and references therein.
(f) Sasaki, M.; Tachibana, K. Tetrahedron Lett. 1991, 32, 6873-6876.
(6) (a) Takeda, T.; Utsuno, A.; Okamoto, N.; Ogihara, Y. Carbohydr. Res.
1990, 207, 71-19. (b) Zhang, H.; Wang, Y.; Thu¨rmer, R.; Parvez, K.;
Atta-ur-Rahman, I. C.; Voelter, W. Z. Naturforsch 1999, 54b, 692-698.
(7) (a) For a review on Staudinger reaction, see: Gololobov, Y. G.; Kasukhin,
L. F. Tetrahedron 1992, 48, 1353-1406. (b) Inazu, T.; Kobayashi, K.
Synlett 1993, 869-870. (c) Boullanger, P.; Maunier, V.; Lafont, D.
Carbohydr. Res. 2000, 324, 97-106. (d) Kova´cs, L.; O¨ sz, E.; Domokos,
V.; Holzer, W.; Gyo¨rgydea´k, Z. Tetrahedron 2001, 57, 4609-4621 and
references therein.
The thiopyridyl coupling reactions were extended using di- and
triglycosyl azides (9a and 9b) to demonstrate the generality of the
methodology (Scheme 4).
In conclusion, a stereoselective synthesis of R-N-glycopyranosyl
amides has been developed that employs the readily available
(8) Soli, E. D.; Manoso, A. S.; Patterson, M. C.; DeShong, P.; Favor, D. A.;
Hirschmann, R.; Smith, A. B. J. Org. Chem. 1999, 64, 3171-3177.
(9) A listing of all acylating agents and reaction conditions investigated is
summarized in the table in the Supporting Information.
JA028694U
9
J. AM. CHEM. SOC. VOL. 125, NO. 15, 2003 4409