catalyst Cp[Xy2(CH2N)2CNN]Ti(CH2Ph)2/B(C6F5)3 is also ef-
fective in ethene/1-alkene copolymerisation and propene homo-
polymerisation. Copolymerisation runs at 80 °C in 210 ml of
toluene at 5 bar ethene pressure, with 20 ml of 1-hexene or
styrene added, yielded the copolymers ethene/1-hexene (3960
kg mol21 h21, Mw = 181 3 103, Mw/Mn = 2.0, 18 wt%
1-hexene incorporation) and ethene/styrene (1960 kg mol21
h21, Mw = 179 3 103, Mw/Mn = 2.1, 10 wt% styrene
incorporation). Propene homopolymerisation (50 °C, 3 bar
propene, 210 ml toluene solvent) yielded polypropene (14360
kg mol21 h21, Mw = 81 3 103, Mw/Mn 1.9) that shows a
significant enrichment in syndiotactic triads (60% rr, 23%
mm).
In conclusion, we have established that the 1,3-bis(xylyl)imi-
noimidazolidide anion is an excellent monoanionic ancillary
ligand for monocyclopentadienyl titanium olefin polymer-
isation catalysts. The comparative ethene homopolymerisation
experiments performed thus far suggest that, under the applied
conditions, the catalyst is even more efficient than the
corresponding catalyst with the successful tris(tert-butyl)phos-
phinimide ancillary ligand.
Fig. 1 Molecular structure of Cp[Ph2(CH2N)2CNN]TiCl2 1bA (hydrogen
atoms omitted for clarity). Selected interatomic distances (Å) and angles (°):
Ti–Cl(1) 2.3045(7), Ti–Cl(2) 2.2902(7), Ti–N(1) 1.792(2), N(1)–C(6)
1.305(3), N(2)–C(6) 1.359(3), N(2)–C(7) 1.465(3), N(3)–C(6) 1.362(3),
N(3)–C(8) 1.467(4); Ti–N(1)–C(6) 152.9(2), Cl(1)–Ti–Cl(2) 100.90(2),
Cl(1)–Ti–N(1) 104.92(6), Cl(2)–Ti–N(1) 105.55(6).
2
Notes and references
group to yield the ionic complex {Cp[Xy2(CH2N)2CNN]Ti(h -
CH2Ph)2}+[PhCH2B(C6F5)3]2. As seen by NMR spectroscopy
(C6D5Br solvent),12 the anion is non-coordinating and the
§ Crystallographic data for Cp[1,3-Ph2(CH2N)2CNN]TiCl2 (1bA):
C20H19Cl2N3Ti, M = 420.15, orthorhombic, space group P212121, a =
9.868(1), b = 10.320(1), c = 18.840(1) Å, U = 1918.6(3) Å3, T = 180 K,
Z = 4, Dc = 1.455 g cm23, m = 7.33 cm21, Enraf-Nonius CAD-4F
diffractometer, l(Mo-Ka) = 0.71073 Å, 4401 unique reflections, final
residuals wR(F2) = 0.0764, R(F) = 0.0316 for 4018 reflections with Fo !
4s(Fo) and 311 parameters. CCDC reference number 176621. See http://
other electronic format.
2
cationic metal centre is stabilised by an h -bonding of the
remaining metal-bound benzyl group.13
In order to compare their efficiency in olefin polymerisation
catalysis, all the complexes Cp(L)Ti(CH2Ph)2 (2a–2b), with L
= [(CH2)5N]2CNN2 (A), Xy2(CH2N)2CNN2 (B), But2CNN2
(C) and But3PNN2 (D) were synthesised, and tested for ethene
homopolymerisation with B(C6F5)3 activator, both in the ab-
sence and presence of partially hydrolysed tris(isobutyl)alumin-
ium (TIBAO)14 as impurity scavenger. The results of these
experiments are listed in Tables 1 and 2 respectively.
From these data it can be seen that the catalyst with the
iminoimidazolidide ligand B is highly efficient, both with and
without TIBAO scavenger. Under the applied conditions this
catalyst performs even better than the catalyst with the
phosphinimide ligand D. The catalysts with the ketimide C and
guanidinate A ancillary ligands are less efficient, with the
guanidinate being especially susceptible to deactivation by
TIBAO scavenger. The steric protection imparted by the xylyl
substituents in the iminoimidazolidide catalyst apparently
makes the system much more robust, while retaining the
favourable electronic properties of the N2CNN ligand core. The
1 W. Kaminsky, Macromol. Chem. Phys., 1996, 197, 3907; M. Boch-
mann, J. Chem. Soc., Dalton Trans., 1996, 255; H. G. Alt and A. Köppl,
Chem. Rev., 2000, 100, 1205.
2 G. J. P. Britovsek, V. C. Gibson and D. F. Wass, Angew. Chem., 1999,
111, 448; G. J. P. Britovsek, V. C. Gibson and D. F. Wass, Angew.
Chem., Int. Ed., 1999, 38, 428.
3 K. Nomura, N. Naga, M. Miki, K. Yanagi and A. Imai, Organome-
tallics, 1998, 17, 2152; K. Nomura, N. Naga, M. Miki and K. Yanagi,
Macromolecules, 1998, 31, 7588.
4 S. Zhang, W. E. Piers, X. Gao and M. Parvez, J. Am. Chem. Soc., 2000,
122, 5499; J. McMeeking, X. Gao, R. P. v. H. Spence, S. J. Brown and
D. D. Jeremic, World Pat., WO 9914250, 1999(Nova Chemicals).
5 D. W. Stephan, J. C. Stewart, F. Guérin, R. E. v. H. Spence, W. Xu and
D. G. Harrison, Organometallics, 1999, 18, 1116; D. W. Stephan, J. C.
Stewart, S. J. Brown, J. W. Swabey and Q. Wang, Eur. Pat., EU
0881233, 1998 (Nova Chemicals).
6 W. Clegg, R. Snaith, H. M. M. Shearer, K. Wade and G. Whitehead, J.
Chem. Soc., Dalton Trans., 1983, 1309.
7 L. Toldy, M. Kürti and I. Schäfer, Ger. Pat., DE 2916140, 1979 (Egyt
Gyo. Gyar.).
Table 1 Ethene homopolymerisation with Cp(L)Ti(CH2Ph)2/B(C6F5)3 ca-
talysts (10 mmol Ti, 1.1 equiv. B(C6F5)3, 210 ml toluene, 5 bar ethene, 80
°C, 15 min run time)
8 A crystal structure determination of 1a revealed a similar monomeric
structure. These data will be reported separately.
9 I. A. Latham, G. J. Leigh, G. Huttner and I. Jibril, J. Chem. Soc., Dalton
Trans., 1986, 377.
Productivity/
kg(PE) mol(Ti)21
Ligand L
PE yield/g
h21 bar21
1023 Mw
Mw/Mn
10 P. J. Bailey and S. Pace, Coord. Chem. Rev., 2001, 214, 91.
11 N. Kuhn, R. Fawzi, M. Steinmann and J. Wiethoff, Z. Anorg. Allg.
Chem., 1997, 623, 769.
A
B
C
D
4.7
11.2
4.4
376
896
353
848
406
361
543
518
1.9
1.9
1.9
2.2
12 1H NMR (C6D5Br, 293 K): d 2.23 (s, 12 H, CH3), 2.73 (s, 2 H,
C6H5CH2Ti), 3.39 (s, br, 2 H, C6H5CH2B), 3.51 (s, 4 H, NCH2), 5.21 (s,
5H, C5H5), 6.29 (d, 2 H, JHH 7.7 Hz, C6H5CH2), 6.83 (t, 2 H, JHH 7.4 Hz,
C6H5CH2), 6.90–7.25 (m, 12 H, Me2C6H3, C6H5CH2); 13C{1H} NMR
(C6D5Br, 293 K, all CF resonances were excluded): d 18.4 (CH3), 33.0
(br, BCH2), 46.6 (CH2CH2), 69.9 (TiCH2), 112.8 (C5H5), 117.4 (Ph),
122.5 (Ph), 123.4 (Ph), 127.8 (C6H3), 128.8 (Ph), 129.7 (C6H3), 130.6
(Ph), 134.3 (C6H3), 135.7 (Ph), 137.5 (C6H3), 149.6 (Ph), 152.4 (Ph),
160.6 (CN); 19F NMR (C6D5Br, 293 K): d 2131.1 (d, o-F), 2164.4 (t,
p-F), 2167.2 (t, m-F); Dd [(p-F) 2 (m-F)] 2.8 ppm.
10.6
Table 2 Ethene homopolymerisation with Cp(L)Ti(CH2Ph)2/B(C6F5)3
catalysts and TIBAO scavenger (10 mmol Ti, 1.1 equiv. B(C6F5)3, Al/Ti =
20, 260 ml toluene, 5 bar ethene, 80 °C, 15 min run time)
Productivity/
kg(PE) mol(Ti)21
13 A. D. Horton, J. de With, A. J. van der Linden and H. van de Weg,
Organometallics, 1996, 15, 2672; C. Pellecchia, A. Immirzi, A. Grassi
and A. Zambelli, Organometallics, 1993, 12, 4473; A. D. Horton and J.
de With, Chem. Commun., 1996, 1375.
14 Prepared according to: J. F. van Baar, P. A. Schut, A. D. Horton, T.
Dall’occo and G. M. M. van Kessel, World Pat., WO0035974, 2000
(Montell).
Ligand L
PE yield/g
h21 bar21
1023 Mw
Mw/Mn
A
B
C
D
0.4
20.0
5.8
32
1600
464
583
663
—
1.7
2.2
—
14.1
1128
717
2.1
CHEM. COMMUN., 2002, 608–609
609