Journal of the American Chemical Society
Communication
(b) Mukherjee, S.; List, B. J. Am. Chem. Soc. 2007, 129, 11336. (c) Trost,
B. M.; Xu, J.; Schmidt, T. J. Am. Chem. Soc. 2009, 131, 18343.
(6) For a recent review on the transition metal-catalyzed enolate
arylation reaction, see: Johansson, C. C. C.; Colacot, T. J. Angew. Chem.,
Int. Ed. 2010, 49, 676.
(7) For recent examples of asymmetric transition metal-catalyzed
enolate arylation reactions, see: (a) Åhman, J.; Wolfe, J. P.; Troutman,
M. V.; Palucki, M.; Buchwald, S. L. J. Am. Chem. Soc. 1998, 120, 1918.
(b) Chen, G.; Kwong, F. Y.; Chan, H. O.; Yu, W.-Y.; Chan, A. S. C.
Chem. Commun. 2006, 1413. (c) Liao, X.; Weng, Z.; Hartwig, J. F. J. Am.
Chem. Soc. 2008, 130, 195.
(8) For recent examples of asymmetric transition metal-catalyzed
enolate vinylation reactions, see: (a) Chieffi, A.; Kamikawa, K.; Åhman,
J.; Fox, J. M.; Buchwald, S. L. Org. Lett. 2001, 3, 1897. (b) Huang, J.;
Bunel, E.; Faul, M. M. Org. Lett. 2007, 9, 4343.
(9) Doyle, A. G.; Jacobsen, E. N. Angew. Chem., Int. Ed. 2007, 46, 3701.
(10) For an alternate approach involving asymmetric reductive acyl
cross-coupling, see: Cherney, A. H.; Kadunce, N. T.; Reisman, S. E. J.
Am. Chem. Soc. 2013, 135, 7442.
(11) For an example of the palladium-catalyzed allylic alkylation with a
cyanohydrin pronucleophile, see: Tsuji, J.; Shimizu, I.; Minami, I.;
Ohashi, Y.; Sugiura, T.; Takahashi, K. J. Org. Chem. 1985, 50, 1523.
(12) For related palladium-catalyzed allylic substitution reactions with
acyl silanes and stannanes, see: (a) Obora, Y.; Ogawa, Y.; Imai, Y.;
Kawamura, T.; Tsuji, Y. J. Am. Chem. Soc. 2001, 123, 10489. (b) Obora,
Y.; Nakanishi, M.; Tokunaga, M.; Tsuji, Y. J. Org. Chem. 2002, 67, 5835.
(13) For three component palladium-catalyzed allylic substitution
reactions with carbon monoxide, see: (a) Tamaru, Y.; Yasui, K.;
Takanabe, H.; Tanaka, S.; Fugami, K. Angew. Chem., Int. Ed. Engl. 1992,
31, 645. (b) Sakurai, H.; Tanabe, K.; Narasaka, K. Chem. Lett. 1999, 309.
(14) For related metal-catalyzed allylic substitution reactions with acyl
anion equivalents, see: (a) Trost, B. M.; Dirat, O.; Dudash, J., Jr.;
which permits the construction of acyclic quaternary-substituted
α,β-unsaturated ketones bearing both an electron-rich and
electron-deficient olefin. Additionally, the use of branched and
functionalized alkyl substituents in the allylic alcohol moiety
provides access to products that would be challenging for
conventional enolate alkylation reactions. The ability to
construct di-, tri-, and tetrasubstituted enones, with complete
transposition of E-geometrical selectivity, further demonstrates
the broad scope of this methodology. Finally, the two-step
sequence involving the allylic alkylation and chemoselective 1,4-
reduction to give a α,α′-dialkyl acyclic ketone highlights the
synthetic potential of this process. Hence, given the utility of the
acyclic quaternary-substituted α,β-unsaturated ketone products,
we anticipate that this approach will permit the construction of
this important and challenging motif in target-directed synthetic
applications.
ASSOCIATED CONTENT
* Supporting Information
■
S
The Supporting Information is available free of charge on the
Experimental procedures, spectral data, and copies of
spectra for all new compounds (PDF)
AUTHOR INFORMATION
Corresponding Author
■
Notes
Hembre, E. J. Angew. Chem., Int. Ed. 2001, 40, 3658. (b) Forster, S.;
̈
The authors declare no competing financial interest.
Tverskoy, O.; Helmchen, G. Synlett 2008, 2008, 2803. (c) Trost, B. M.;
Osipov, M.; Kaib, P. S. J.; Sorum, M. T. Org. Lett. 2011, 13, 3222.
(d) Ahire, M. M.; Mhaske, S. B. Angew. Chem., Int. Ed. 2014, 53, 7038.
(e) Breitler, S.; Carreira, E. M. J. Am. Chem. Soc. 2015, 137, 5296.
(15) Evans, P. A.; Leahy, D. K. In Modern Rhodium-Catalyzed Organic
Reactions; Evans, P. A., Ed.; Wiley-VCH: Weinheim, Germany, 2005;
Ch. 10, p 191−214.
ACKNOWLEDGMENTS
■
We sincerely thank the National Sciences and Engineering
Research Council (NSERC) for a Discovery grant and Queen’s
University for generous financial support. NSERC is also
thanked for supporting a Tier 1 Canada Research Chair
(PAE). We also acknowledge the Royal Society for a Wolfson
Research Merit Award (PAE) and the EPSRC and AstraZeneca
(Alderley Park) for a Ph.D. studentship (S.O.). We also offer our
gratitude to Dr. Paul Kemmitt (AZ) for his support and helpful
discussions and to the EPSRC National Mass Spectrometry
Service Centre (Swansea, U.K.) for high-resolution MS.
(16) For mechanistic studies, see: Evans, P. A.; Nelson, J. D. J. Am.
Chem. Soc. 1998, 120, 5581.
(17) (a) Evans, P. A.; Oliver, S.; Chae, J. J. Am. Chem. Soc. 2012, 134,
19314. (b) Evans, P. A.; Oliver, S. Org. Lett. 2013, 15, 5626.
(18) Kurono, N.; Yamaguchi, M.; Suzuki, K.; Ohkuma, T. J. Org. Chem.
2005, 70, 6530.
(19) The fluoride ion deprotection was conducted at low temperature
to suppress competitive Michael addition of the liberated cyanide to the
α,β-unsaturated ketone.
(20) In all cases the alkylation proceeds with complete retention of the
(E)-cyanohydrin stereochemistry (E/Z ≥ 19:1).
(21) Although the 1,2-disubstituted cyanohydrin (Z)-2a underwent
complete isomerization under the reaction conditions, a mixture of E/Z
isomers (1:1) of the tri- and tetra-substituted alkenyl cyanohydrins 2h/
2i provided the ketones 3h/3i as a mixture of isomers (E/Z = 3:1 and
4:1, respectively), albeit favoring the trans derivative.
(22) (a) Stymeist, J. L.; Bagutski, V.; French, R. M.; Aggarwal, V. K.
Nature 2008, 456, 778. (b) Bagutski, V.; French, R. M.; Aggarwal, V. K.
Angew. Chem., Int. Ed. 2010, 49, 5142.
(23) The term conservation of enantiomeric excess (cee) = (ee of
product/ee of starting material) × 100. Evans, P. A.; Robinson, J. E.;
Nelson, J. D. J. Am. Chem. Soc. 1999, 121, 6761.
(24) The absolute configuration of the major enantiomer in the
alkylation was confirmed by the preparation of the serotonin antagonist
LY426965, see the SI for details.
REFERENCES
■
(1) For recent reviews on the catalytic enantioselective construction of
quaternary carbon stereogenic centers, see: (a) Corey, E. J.; Guzman-
Perez, A. Angew. Chem., Int. Ed. 1998, 37, 388. (b) Christoffers, J.; Mann,
A. Angew. Chem., Int. Ed. 2001, 40, 4591. (c) Denissova, I.; Barriault, L.
Tetrahedron 2003, 59, 10105. (d) Trost, B. M.; Jiang, C. Synthesis 2006,
3, 369. (e) Quasdorf, K. W.; Overman, L. E. Nature 2014, 47, 4593.
(2) For a recent review on the enantioselective construction of acyclic
quaternary carbon stereogenic centers, see: Das, J. P.; Marek, I. Chem.
Commun. 2011, 47, 4593.
(3) For recent reviews on the enantioselective enolate alkylation
reaction, see: Stoltz, B. M.; Mohr, J. T. In Science of Synthesis, De Vries, J.
G., Molander, G. A., Evans, P. A., Eds.; Thieme: Stuttgart, Germany,
2010; Vol. 3, p 567.
(4) For recent reviews on the transition metal-catalyzed allylic
alkylation of enolates and enolate equivalents, see: (a) Braun, M.; Meier,
T. Synlett 2006, 661. (b) Mohr, J. T.; Stoltz, B. M. Chem. - Asian J. 2007,
2, 1476. (c) Oliver, S.; Evans, P. A. Synthesis 2013, 45, 3179.
(5) For recent examples of the asymmetric alkylation of acyclic
enolates, see: (a) Yan, X.-X.; Liang, C.-G.; Zhang, Y.; Hong, W.; Cao, B.-
X.; Dai, L.-X.; Hou, X.-L. Angew. Chem., Int. Ed. 2005, 44, 6544.
(25) (a) Churchill, M. R.; Bezman, S. A.; Osborn, J. A.; Wormald, J. J.
Am. Chem. Soc. 1971, 93, 2063. (b) Mahoney, W. S.; Brestensky, D. M.;
Stryker, J. M. J. Am. Chem. Soc. 1988, 110, 291.
D
J. Am. Chem. Soc. XXXX, XXX, XXX−XXX