Communications
Organometallics, Vol. 21, No. 13, 2002 2577
alkynyl complex 3, obtained in the stepwise activation
of 1-alkynes, and its neutral acyl and hydride deriva-
tives 4-6 are interesting polyfunctional dinuclear com-
pounds. Further studies are in progress aimed at
comparing the reactivities of the various functions and
promoting C-C coupling reactions.
Ack n ow led gm en t. The Consiglio Nazionale delle
Ricerche (CNR) and MURST, Programmi di Interesse
Nazionale (2000-2001), are gratefully acknowledged for
financial support.
Su p p or tin g In for m a tion Ava ila ble: Tables of crystal
data, positional parameters for non-hydrogen and hydrogen
atoms, bond distances and angles, and anisotropic thermal
parameters and an ORTEP view with the full numbering
scheme for the structure of complex 3. This material is
Figu r e 1. Molecular structure of the cation [(η1-PhCC)(But -
2
HP)Pt(µ-PBut )(µ,η1:η2-C(Ph)dCH2)Pt(CO)(PBut H)]+ ((3)+).
2
2
Only the Pt and P atoms are represented by 30% ellipsoids,
and most of the hydrogens are omitted for clarity. Main
bond distances (Å) and angles (deg): Pt(1)-C(10), 1.96(3);
Pt(1)-P(1), 2.340(7); Pt(1)-P(3), 2.352(7); Pt(1)-C(2), 2.25-
(2); Pt(1)-C(3), 2.37(2); Pt(2)-C(3), 2.07(2); Pt(2)-P(3),
2.361(7); Pt(2)-C(1), 1.92(2); Pt(2)-P(2), 2.365(7); C(2)-
C(3), 1.39(3); C(3)-C(4), 1.50(3); C(10)-Pt(1)-C(2), 162.1-
(10); C(10)-Pt(1)-P(1), 87.7(9); C(2)-Pt(1)-P(1), 86.8(7);
C(10)-Pt(1)-P(3), 94.3(9); C(2)-Pt(1)-P(3), 91.9(7); P(1)-
Pt(1)-P(3), 177.2(2); C(10)-Pt(1)-C(3), 162.4(10); C(2)-
Pt(1)-C(3), 35.0(8); P(1)-Pt(1)-C(3), 102.9(6); P(3)-Pt(1)-
C(3), 74.8(6); C(1)-Pt(2)-C(3), 177.3(9); C(1)-Pt(2)-P(3),
97.7(7); C(3)-Pt(2)-P(3), 80.3(7); C(1)-Pt(2)-P(2), 93.4-
(7); C(3)-Pt(2)-P(2), 88.4(7); P(3)-Pt(2)-P(2), 167.7(2);
C(3)-C(2)-Pt(1), 77.4(13); C(2)-C(3)-C(4), 119(2); C(2)-
C(3)-Pt(2), 118.5(16); C(4)-C(3)-Pt(2), 120.2(17); C(2)-
C(3)-Pt(1), 67.6(13); C(4)-C(3)-Pt(1), 108.6(15); Pt(2)-
C(3)-Pt(1), 106.5(10).
OM020133O
(18) Complex 4 was isolated (58% yield) as a pale yellow, unstable
solid by reacting 3 with a 10-fold excess of NaBH4 in methanol. 4*
was prepared analogously by starting from 3*. 4: 1H NMR (C6D6, 293
3
K) δ (ppm)# 0.73, 1.18, 1.33, 1.36, 1.92, 1.93 (all d, J HP ) 13.7-14.3
Hz, 54 H, PCCH3), 3.77 (d, 1J HP ) 330, 2J HPt ) 22 Hz, 1 H, P2H), 4.91
2
2
1
2
(d, J HP ) 410, J HPt ) 13 Hz, 1 H, P1H), 4.12 (m, 1 H, PhCC(H)H),
1
1
2
5.74 (m, J HPt ) 43 Hz, 1 H, PhCC(H)H), 7.09 (m, 6 H, Ph), 7.51 (d, 2
3
2
H, Ph), 7.79 (d, 2 H, Ph), 15.4 (dd, J HP ) 4.3, 12.9, J HPt ) 334 Hz, 1
H, CHO); 31P{1H} NMR (C6D6, 293 K) δ (ppm)# -35.3 2(dd, 2J P
)
3P1
324, 2J P
) 237, 1J P
) 2167, 1J P
2Pt2
) 2633 Hz, P3), 46.9 (dd,
3Pt2
3P2
3Pt1
2J P ) 237, 3J P ) 7.8, 1J P
) 2168 Hz, P2), 55.4 (dd, 2J P ) 324,
2P3
2P1
1P3
3J P ) 7.8, 1J P
) 2203 Hz, P1), further splitting in the H-coupled
1P2
1Pt1
spectrum for the signals at 43.9 (ddd, 1J P ) 330 Hz) and at 55.4 (ddd,
2H
1J P ) 410 Hz); 195Pt{1H} NMR (C6D6, 293 K) δ (ppm) -3700 (dd,
1H
1J Pt
) 2633, J Pt
) 2168 Hz, Pt2), -4254 (dd, J Pt
) 2167,
1P3
1
1
2P3
2P2
1J Pt
) 2203 Hz, Pt1), further splitting in the H-coupled spectrum
1P1
for the signals at -3700 ppm (ddd, J Pt ) 334 Hz); 13C{1H} NMR
1
2H
(C6D6, 293 K) δ (ppm)# 29.9-34.5 (m, PCCH3), 35.5, 35.9, 36.1, 36.5,
37.0, 37.9 (w s, PCCH3), 93.6 (w s, PhCCH2), 102.2 (w br s, J CPt ) 770
Hz, PhCC), 124.7, 127.3, 128.4, 130.1, 130.8 (all s, Ph), 217.0 (w s,
(2) Å), which are also terminally bonded to a secondary
phosphine (pseudo-trans with respect to the bridging P
nucleus) and a carbonyl (Pt(2)-C(1) ) 1.92(2) Å) or a
linear η1-alkynyl (Pt(1)-C(10) ) 1.96(3) Å) in a pseudo-
cis fashion to Pµ. The coordination spheres are com-
pleted by a bridging PhCCH2 vinyl group σ-bonded to
Pt(2) and π-bonded to Pt(1) (Pt(2)-C(3) ) 2.07(2) Å,
Pt(2)‚‚‚C(2) ) 3.00(2) Å, Pt(1)-C(2) ) 2.25(2) Å, Pt(1)-
C(3) ) 2.37(2) Å). All NMR spectra suggest that the
structure is maintained in solution. Complex 3 is air-
and moisture-stable and does not reductively eliminate
on warming the ene-yne by coupling of the carbyl
moieties. The more electrophilic center of the cation is
the carbonyl ligand, as indicated by the reactions with
nucleophiles. Actually, complex 3 reacts with NaBH4
and CH3OLi to give the corresponding acyl derivatives
CdO), further splitting in the H-coupled spectrum for the signals at
1
217.0 ppm (d, J CH ) 158 Hz); IR (KBr, Nujol) 1639 s (νCdO) cm-1
.
(19) 4*: same signals as 4 except those at 15.4 ppm (ddd) in the 1H
1
NMR, which split further due to J HC ) 158 Hz, and at 217.0 ppm in
the 13C{1H} (strong s, 1J CPt ) 1021 Hz) and 13C (strong d, 1J HC ) 158,
1J CPt ) 1021 Hz) NMR spe2ctra. The νCdO absorption is shifted to 1607
2
cm-1 in the IR spectrum.
(20) Leoni, P.; Marchetti, F.; Marchetti, L.; Pasquali, M.; Quaglierini,
S. Angew. Chem., Int. Ed. 2001, 40, 3617.
(21) Complex 5 was isolated (64% yield) as a colorless, stable solid
by reacting 3 with a 5-fold excess of LiOCH3 in methanol. Anal. Calcd
for C42H71O2P3Pt2: C, 46.2; H, 6.56. Found: C, 45.8; H, 6.72. 5: 1H
NMR (C6D6, 293 K) δ (ppm) 0.86, 1.28, 1.30, 1.38, 2.01, 2.06 (all d,
3J HP ) 14.3-16.0 Hz, 54 H, PCCH3), 3.47 (s, 3 H, OCH3), 3,71 (d,
1
1J HP ) 340 Hz, 1 H, PH), 4.63 (d, J HP ) 392 Hz, 1 H, PH), 4.92 (m,
1
1 H,2PhCC(H)H), 5.65 (m, 1 H, PhCC(H)H), 7.11 (m, 6 H, Ph), 7.69 (d,
2 H, Ph), 7.81 (d, 2 H, Ph); 31P{1H} NMR (C6D6, 293 K) δ (ppm)# -45.3
(dd, 2J P ) 318, 2J P ) 262, 1J P
) 2318, 1J P
) 1750 Hz, P3),
3Pt1
3P1
3P2
3Pt2
47.1 (d, 2J P
) 262, 1J P
) 1861 Hz, P2), 55.5 (d, 2J P
) 318,
1P3
2P3
2Pt2
1J P
) 2168 Hz, P1); IR (KBr, Nujol) 1652 s (νCdO) cm-1
.
1Pt1
(22) Complex 6 was isolated (70% yield) as a yellow, stable solid
after stirring for 3 days at room temperature a toluene solution of 4.
Anal. Calcd for C40H69P3Pt2: C, 46.5; H, 6.73. Found: C, 46.8; H, 6.68.
4 and 5, respectively. The formyl complex (η1-PhCC)(But -
2
HP)Pt(µ-PBut )(µ,η1:η2-C(Ph)dCH2)Pt(CHO)(PBut H)
2
2
6: 1H NMR (CD2Cl2, 293 K) δ (ppm)# -9.75 (dd, J HP ) 4.4, 18.0,
2
(4),18 whose structure was unambiguously confirmed by
the spectra of the labeled 13CHO species (4*),19 exhibits
a remarkably high thermal stability (τ1/2(dec) ) 5 h); it
is worth noting that formyl complexes of platinum were
unknown until recently.20 The methoxycarbonyl com-
pound (η1-PhCC)(But HP)Pt(µ-PBut )(µ,η1:η2-C(Ph)d
1J HPt ) 1415 Hz, 1 H, PtH), 0.81, 1.27, 1.31, 1.41, 1.56, 1.62 (all d,
2
J HP ) 13.3-14.1 Hz, 54 H, PCCH3), 2.75 (d, 1J HP ) 332 Hz, 1 H, PH),
3
1
3
2
4.10 (dd, J HP ) 314, J HP ) 4.2, J HPt ) 19 Hz, 1 H, PH), 4.17 (m,
J HPt ) 47 Hz, 21 H, PhCC(H3)H), 4.90 (d, J HP ) 3, J HPt ) 24, 38 Hz, 1 H,
2
PhCC(H)H), 7.0-7.2, 7.4, 7.7 (m, 10 H, Ph).; 31P{1H} NMR (C6D6, 293
K): δ (ppm)# -34.2 (dd, 2J P
) 318, 2J P
) 278, 1J P
) 2160,
3Pt1
3P1
3P2
1J P
) 2293 Hz, P3), 64.6 (dd, 2J P
) 278, 3J P
) 8.2, 1J P
)
2Pt2
3Pt2
2P3
2P1
2020 Hz, P2), 58.2 (dd, 2J P ) 318, 3J P ) 8.2, 1J P
) 2139 Hz),
2
2
1P3
1P2
1Pt1
CH2)Pt(COOCH3)(PBut H) (5)21 is stable for weeks both
further splitting in the H-coupled spectrum for the signals at 64.6 (ddd,
2
1J P ) 300 Hz) and 58.2 (ddd, 1J P ) 314 Hz); 195Pt{1H} NMR (C6D6,
293 K) δ (ppm) -4628 (dd, 1J Pt )2H2293, 1J Pt ) 2020 Hz, Pt2), -4249
2H
in solution and in the solid state. On warming at room
2P3
2P2
temperature complex 4 rapidly loses CO and is quan-
1
1
(dd J Pt
) 2160, J Pt
) 2139 Hz, Pt1), further splitting in the
1P1
1
1P3
titatively converted into the hydride (η1-PhCC)(But HP)-
H-coupled spectrum for the signals at -4628 (ddd, J Pt ) 1412 Hz);
2H
2
13C{1H} NMR (CD2Cl2, 293 K) δ (ppm) 30.0, 31.1, 32.7, 33.6 (all br s,
PCCH3) 34.0-37.0 (w br m, PCCH3), 93.6 (w s, J CPt ) 65 Hz, PhCCH2),
117.3 (s, J CPt ) 267 Hz, PhCC), 124.1, 126.5, 126.9, 128.0, 129.5, 130.3
(all s, Ph), 151.3 (w br s, J CPt ) 20 Hz, PhCCH2); IR (KBr, Nujol) 2120
Pt(µ-PBut )(µ,η1:η2-C(Ph)dCH2)Pt(H)(PBut H) (6).22
2
2
The present study confirms the ready accessibility of
the protected diplatinum site in 1. The cationic alkenyl-
w (νCC), 2096 s (νPtH) cm-1
.