H. D. King et al. / Tetrahedron Letters 43 (2002) 1987–1990
1989
Toru, T.; Ueno, Y. J. Org. Chem. 1997, 62, 2652 and
references cited therein.
7. Experimental details for this synthesis are reported in
Dubowchik et al., submitted for publication.
8. (a) Walker, M. A. Tetrahedron Lett. 1994, 35, 665; (b)
Walker, M. A. J. Org. Chem. 1995, 60, 5352.
3a
OH
L-Phe-L-Lys(Mtr)
N
H
NHS
DCC
DME
13
O
9. Representative synthetic procedure for 7a: In a 1000 mL
3-neck round bottomed flask, equipped with two drop-
ping funnels, Ph3P (27.0 g, 0.103 mol) was dissolved in
700 mL of THF and cooled to −78°C. DEAD (16.22 mL,
0.103 mol) was added dropwise via a dropping funnel
and the resulting light yellow solution stirred 5 min.
Compound 9a (29.7 g, 0.103 mol) was dissolved in 100
mL of THF and added dropwise over 15 min using the
second dropping funnel. Neopentyl alcohol (4.54 g, 0.052
mol) was added in one portion followed by maleimide (10
g, 0.103 mol). The flask was removed from the cooling
bath and allowed to stir overnight. The reaction mixture
was concentrated to 1/4 the original volume by rotary
evaporation and purified by flash column chromatogra-
phy with 6:1 hexanes/EtOAc on SiO2. Pure 7a (25 g, 66%
yield) was isolated as a solid mp 64–66°C. 1H NMR
(CDCl3) l 1.37 (s, 9), 2.85 (t, 2, J=6.4), 3.36 (s, 4), 3.54
(t, 2, J=6.5), 6.62 (s, 2). 13C NMR (CDCl3) l 28.08,
35.68, 51.42, 55.34, 80.92, 134.03, 170.35, 170.82. 7b:
OH
N
L-Phe-L-Lys(Mtr)-N
H
N
O
O
O
OH
L-Phe-L-Lys(Mtr)-N
H
14
Ab
S
O
O
O
N
L-Phe-L-Lys-N
NH-Drug
N
H
O
O
O
NH-Drug
O
L-Phe-L-Lys-N
H
O
Scheme 4.
1
Solid mp 51–52°C. H NMR (CDCl3) l 1.33 (s, 9), 1.62
(p, 2, J=7.1), 2.61 (t, 2, J=7.0), 3.29 (s, 3), 3.48 (t, 2,
J=7.1), 6.57 (s, 2). 13C NMR (CDCl3) l 27.74, 35.82,
51.28, 55.50, 80.78, 134.01, 134.92, 170.41, 170.69. 7d:
which, utilizing standard disconnections, require five–
six steps to accomplish. Our synthesis utilizes modified
Mitsunobu reaction conditions to install a maleimide
moiety in one step onto appropriately substituted
amino alcohols. Linkers 3a–b,d may be coupled to
cytotoxic drugs and used to construct MAb conjugates.
1
Oil. H NMR (CDCl3): l 1.04 (m, 6), 1.22 (s, 18), 1.30
(m, 2), 2.42 (dd, 2, J=7.27), 3.17 (s, 4), 3.26 (t, 2, J=7.2),
6.45 (s, 2). 13C NMR (CDCl3): l 26.49, 26.55, 27.69,
27.99, 28.33, 37.64, 53.83, 55.72, 80.61, 133.86, 170.54,
170.66.
10. We have found that the Mitsunobu procedure is difficult
for amino alcohols which have an amine group which is
optimally positioned for cyclization and/or has a higher
pKa.
References
11. Abbreviations: DEAD (diethylazodicarboxylate), DIAD
(diisopropylazodicarboxylate), Mtr (methoxytrityl), DCC
(dicyclohexylcarbodiimide).
12. For a more detailed discussion of this side reaction see:
Walker, M. A. Tetrahedron Lett. 1996, 37, 8133.
13. p-Toluenesulphonic acid (TsOH) was found to be supe-
rior to trifluoroacetic acid in this procedure and also
provides the products as solid p-tosylate salts, making
them convenient to handle and purify.
14. (a) Dubowchik, G. M.; Radia, S. Tetrahedron Lett. 1997,
38, 5257; (b) Dubowchik, G. M.; Firestone, R. A. Bioorg.
Med. Chem. Lett. 1998, 8, 3341; (c) Dubowchik, G. M.;
Mosure, K.; Knipe, J. O.; Firestone, R. A. Bioorg. Med.
Chem. Lett. 1998, 8, 3347; (d) De Groot, F. M. H.; de
Bart, A. C. W.; Verheijen, J. H.; Scheeren, H. W. J. Med.
Chem. 1999, 42, 5277.
1. Wong, S. S. Chemistry of Protein Conjugation and Cross-
linking; CRC Press: Boca Raton, 1991 and references
cited therein.
2. For reviews and recent examples, see: (a) Dubowchik, G.
M.; Walker, M. A. Pharmacol. Ther. 1999, 83, 67–123;
(b) Pai, L. H.; Pastan, I. J. Am. Med. Assoc. 1993, 269,
78; (c) Rusiecki, V. K.; Warne, S. A. Bioorg. Med. Chem.
Lett. 1993, 3, 707; (d) Janda, K. D.; Ashley, J. A.; Jones,
T. M.; McLeod, D. A.; Schloeder, D. M.; Weinhouse, M.
I. J. Am. Chem. Soc. 1990, 112, 8886; (e) Pietersz, G. A.
Bioconjugate Chem. 1990, 1, 89; (f) Maggio, E. T.
Enzyme-Immunoassays; CRC Press: Boca Raton, 1980.
3. Maleimide reacts approximately 1000-times faster with
thiols than with amines at neutral pH and below. At this
pH the amino groups of lysine and arginine are mostly
protonated.
15. Analytical data 3a: 1H NMR (DMSO-d6) l 2.25 (s, 3),
3.51 (m, 2), 3.80 (m, 2), 4.21 (s, 4), 7.01 (s, 2), 7.10 (d, 2,
J=8.0), 7.50 (d, 2, J=8.0), 11.09 (br s, 2). 13C NMR
(DMSO-d6): l 20.86, 32.28, 52.54, 53.66, 125.58, 128.39,
134.96, 138.47, 144.65, 167.44, 170.84. MS (HR ESI)
calcd for C10H12N2O6·H+ (MH+): 257.0774. Found:
257.0779. 3b: 1H NMR (DMSO-d6): l 1.88 (m, 2), 2.28 (s,
3), 3.20 (m, 2), 3.42 (m, 2), 4.12 (s, 4), 7.04 (s, 2), 7.11 (d,
2, J=8.0), 7.48 (d, 2, J=8.0). 13C NMR (DMSO-d6): l
20.75, 23.55, 34.23, 53.68, 54.21, 125.46, 128.07, 134.58,
4. Trail, P. A.; Willner, D.; Hellstro¨m, K. E. Drug Develop.
Res. 1995, 34, 196.
5. (a) Willner, D.; Trail, P. A.; Hofstead, S. J.; King, H. D.;
Lasch, S. J.; Braslawsky, G. R.; Greenfield, R. S.;
Kaneko, T.; Firestone, R. A. Bioconjugate Chem. 1993, 4,
521; (b) King, H. D.; Yurgaitis, D.; Willner, D.; Fire-
stone, R. A.; Yang, M. B.; Lasch, S. J.; Hellstrom, K. E.;
Trail, P. A. Bioconjugate Chem. 1999, 10, 279.
6. For a recent example, see: Reddy, P. Y.; Kondo, S.;