F. Palluotto et al. / Il Farmaco 57 (2002) 63–69
65
Scheme 3. Reagents: (i) 1. NaH–an DMF, r.t.; 2. CH3CH2I–an DMF, r.t.; (ii) 1. NaOH–EtOH, reflux; 2. HCl, r.t.
Table 1
Physical and spectroscopic data of compounds 2–10
Comp
m.p. (°C)
IR wmax, (cm−1
)
1H NMR, l (ppm), J (Hz) a
(crystallization
solvent)
2e
2h
323–325 dec (acetic
acid)
260–261 (methanol)
3300, 1710, 1640, 7.25–7.40 (m, 1H, Arom); 7.55–7.70 (m, 4H, Arom); 7.75–7.90 (m, 2H, Arom); 8.01 (d,
1610 1H, Arom, J=7.9); 12.20 (s, 1H, NH); 14.30 (s, 1H, COOH)
3290, 1710, 1650, 1.10–1.55 (m, 6H, 3CH2); 1.65–1.85 (m, 4H, 2CH2); 2.50–2.70 (m, 1H, CH); 7.45–7.55
1620
(m, 2H, Arom); 7.60–7.70 (m, 2H, Arom); 7.75–7.80 (m, 2H, Arom); 7.82 (s, 1H,
Arom); 12.09 (s, 1H, NH); 14.33 (s, 1H, COOH)
3a
3i
305–310 dec (dioxane) 3310, 1710, 1650, 3.94 (s, 3H, CH3); 7.25–7.40 (m, 1H, Arom); 7.55–7.65 (m, 2H, Arom); 7.99 (d, 1H,
1615
Arom, J=7.6); 12.06 (s, 1H, NH); 14.60 (s, 1H, COOH)
326–328 dec (dioxane) 3315, 1700, 1650
3.94 (s, 3H, CH3); 7.46 (dt, 1H, Arom, J=8.8, J=2.6); 7.58 (dd, 1H, Arom, J=8.8,
J=4.4); 7.84 (dd, 1 H, Arom, J=8.2, J=2.6); 12.10 (s, 1H, NH)
3l
302–303 (dioxane)
3255, 1695, 1650, 3.95 (s, 3H, CH3); 7.70 (d, 1H, J=6.0); 8.11 (d, 1H, J=8.5); 12.10 (s, 1H, NH); 14.45
1625
(s, 1H, COOH)
4a
4i
304–305 (acetonitrile) 3305, 1710, 1650
314–316 (acetonitrile) 3280, 1710, 1630
1.74 (s, 9H, 3CH3); 7.31 (dd, 1H, Arom, J=7.0, J=1.9); 7.55–7.65 (m, 2H, Arom);
8.00 (d, 1H, Arom, J=7.8); 12.00 (s, 1H, NH); 15.00 (s, 1H, COOH)
1.79 (s, 9H, 3CH3); 7.26 (dt, 1H, J=8.7, J=2.3); 7.36 (dd, 1H, J=8.7, J=4.1); 7.71
(dd, 1H, J=7.8, J=2.3); 9.92 (s, 1H, NH); 14.78 (s, 1H, COOH)
1.32 (t, 3H, CH3, J=7.0); 4.35 (q, 2H, CH2, J=7.0); 7.20–7.30 (m, 1H, Arom);
7.45–7.55 (m, 2H, Arom); 7.89 (d, 1H, Arom, J=7.8); 11.46 (s, 1H, NH), 13.19 (s,
1H, OH)
1.31 (t, 3H, CH3, J=7.2); 4.35 (q, 2H, CH2, J =7.2); 7.35 (dt, 1H, Arom, J=8.8,
J=2.5); 7.51 (dd, 1H, Arom, J=8.8, J=4.4); 7.73 (dd, 1H, Arom, J=8.2, J=2.5);
11.48 (s, 1H, NH); 13.30 (s, 1H, OH)
5a
306–307 (ethanol)
3220, 1650, 1630
3240, 1690, 1650
5i
324–326 (acetic acid)
5l
6a
6i
343–347 dec (acetic
acid)
336–345 dec (acetic
acid)
3240, 1695, 1650
3260, 1710, 1640
3285, 1690, 1640
1.31 (t, 3H, CH3, J=7.0); 4.36 (q, 2H, CH2, J=7.0); 7.61 (d, 1H, Arom, J=6.0);
7.97 (d, 1H, Arom, J=8.5); 11.54 (s, 1H, NH); 13.40 (s, 1H, OH)
7.25–7.35 (m, 1H, Arom), 7.55–7.65 (m, 2H, Arom); 8.02 (d, 1H, Arom, J=7.7); 12.08
(s, 1H, NH); 14.18 (s, 1H, OH), 14.80 (s, 1H, COOH)
7.45 (dt, 1H, Arom, J=8.8, J=2.5); 7.59 (dd, 1H, Arom, J=8.8, J=4.4); 7.87 (dd,
1H, Arom, J=8.2, J=2.5); 12.08 (s, 1H, NH); 14.25 (s, 1H, OH); 14.74 (s, 1H,
COOH)
\350 (acetic acid)
6l
7
340–350 dec (acetic
acid)
130–133
3230, 1710, 1655, 7.69 (d, 1H, Arom, J=6.0); 8.14 (d, 1H, Arom, J=8.6); 12.13 (s, 1H, NH); 14.40 (s,
1625
1H, OH), 14.80 (s, 1H, COOH)
1730, 1640, 1610
1.38 (t, 3H, CH3, J=7.2); 1.48 (t, 3H, CH3, J=7.2); 3.98 (s, 3H, CH3); 4.06 (q, 2H,
CH2, J=7.2); 4.54 (q, 2H, CH2, J=7.2); 7.20–7.35 (m, 2H, Arom); 7.55 (dt, 1H,
Arom, J=7.6, J=1.2); 8.02 (d, 1H, Arom, J=7.6)
(acetonitrile–water)
8
9
205–210 (dioxane)
3430, 1720, 1595
1.25 (t, 3H, CH3, J=7.2); 3.85 (s, 3H, CH3); 4.30 (q, 2H, CH2, J=7.2); 7.25–7.35 (m,
1H, Arom); 7.55–7.65 (m, 2H, Arom); 7.98 (d, 1H, Arom, J=7.5)
168–170
3500, 1720, 1630, 1.32 (t, 3H, CH3, J=7.1); 1.33 (t, 3H, CH3, J=7.1); 4.25 (q, 2H, CH2, J=7.1); 4.36
(acetonitrile–water)
1610
(q, 2H, CH2, J=7.1); 7.20–7.25 (m, 1H, Arom); 7.45–7.55 (m, 2H, Arom); 7.91 (d,
1H, Arom, J=7.7); 11.45 (s, 1H, NH)
10
295–305 dec (acetic
3300, 1700, 1640, 1.39 (t, 3H, CH3, J=7.1); 4.38 (q, 2H, CH2, J=7.1); 7.30–7.35 (m, 1H, Arom);
acid)
1605
7.55–7.65 (m, 2H, Arom); 8.03 (d, 1H, Arom, J=7.9); 12.07 (s, 1H, NH); 14.75 (s,
1H, COOH)
a 1H NMR spectra were recorded in DMSO-d6 with the exception of compound 4i and 7 (CDCl3).
alkyl derivatives 3a and 4a and even greater of that
of the N-2 phenyl analog 2a. As for the N-2 alky-
lated compounds, the N-2 CH3 derivatives 3 showed
an activity close to that of the corresponding more
lipophilic N-2 tert-butyl derivatives 4. The introduc-
tion of halogens in positions 7 and 8 afforded more
active compounds only in the series of N-2 unsubsti-
tuted derivatives (compare compound 6l with 6a, i).
Finally the alkylation of the indolic NH in the N-2
methyl, or phenolic OH in the N-2 unsubstituted se-
ries (derivatives 8 and 10 respectively), led to a drop
of activity.