S. Jew et al. / Tetrahedron: Asymmetry 13 (2002) 715–720
719
reaction mixture was cooled to 0°C, and then carbon
disulfide (8.0 mL) was added to the mixture dropwise.
The resulting mixture was stirred for 2 h at 60°C, and
the temperature was cooled to 0°C. Methyl iodide (1.4
mL) was added and the resulting solution was allowed
to warm to room temperature while stirring for 1 h.
The reaction mixture was quenched by addition of
water and the solvent was removed in vacuo. The
residue was diluted with EtOAc and washed with water
and brine. The organic phase was dried over MgSO4,
filtered and evaporated. The residue was purified by
silica gel chromatography (hexanes:EtOAc=1:1) to
afford the desired xanthate as a yellow oil (2.59 g,
99%). To a solution of xanthate (844 mg, 1.17 mmol)
and AIBN (19 mg, 0.12 mmol) in anhydrous benzene
was added n-Bu3SnH (0.9 mL, 3.50 mmol) at ambient
temperature. The resulting solution was stirred for 2 h
at 80°C. The solvent was removed in vacuo and the
residue was purified on silica gel chromatography (hex-
anes:EtOAc=1:1) to afford 658 mg (91%) of the
4.84 (br s, 1H), 5.67 (d, 1H, J=2.2 Hz), 5.87 (d, 1H,
J=2.2 Hz), 6.56–6.70 (m, 3H), 8.79 (s, 1H), 8.84 (s,
1H), 8.91 (s, 1H), 9.15 (s, 1H); 13C NMR (DMSO-d6,
100 MHz) l 28.3, 66.7, 81.4, 94.3, 95.5, 99.5, 114.9,
115.5, 118.9, 131.0, 145.2, 146.0, 155.8, 156.6, 156.9; IR
(KBr) 1469, 1521, 1625, 3345 cm−1; LRMS (EI) 290
[M]+.
Acknowledgements
The work reported in this paper was supported by
grants from Aminogen Co., Korea, via the Research
Center of New Drug Development of Seoul National
University, and the Korea Health 21 R&D Project,
Ministry of Health & Welfare, Republic of Korea
(01-PJ2-PG6-01NA01-0002).
1
desired product 12 as a colorless oil. H NMR (CDCl3,
References
400 MHz) l 2.62 (dd, 1H, J=13.7, 3.6 Hz), 2.95–3.01
(m, 1H), 3.39 (s, 3H), 3.46 (s, 6H), 3.47 (s, 6H), 3.53 (d,
6H, J=3.6 Hz), 4.15–4.19 (m, 1H), 4.48 (dd, 2H,
J=9.3, 6.7 Hz), 4.62 (d, 1H, J=5.4 Hz), 4.66 (dd, 2H,
J=13.7, 6.7 Hz), 5.14 (d, 6H, J=9.3 Hz), 5.23 (s, 4H),
6.51 (s, 2H), 6.98 (dd, 1H, J=8.3, 1.7 Hz), 7.12 (d, 1H,
J=8.3 Hz), 7.22 (d, 1H, J=1.7 Hz); IR (neat) 1026,
1152, 1507, 3565 cm−1; LRMS (CI) 616 [M]+.
1. Bohm, B. A. In The Flavanoids—Advance in Research
Since 1986; Harnone, J. B., Ed.; Chapmane & Hall:
London, 1994; p. 23.
2. (a) Weyant, M. J.; Carothers, A. M.; Dannenberg, A.
J.; Bertagonolli, M. M. Cancer Res. 2001, 61, 118; (b)
Garbisa, S.; Biggin, S.; Cavallarin, N.; Sartor, L.;
Benelli, R.; Albini, A. Nat. Med. 1999, 5, 1216; (c)
Cao, Y.; Cao, R. Nature (Lond.) 1999, 38, 398.
3. Choi, J. S.; Park, K. Y.; Mon, S. H.; Rhee, S. H.;
Yound, H. S. Arch. Pharm. Res. 1994, 17, 71.
4. (a) Nakao, M.; Takio, S.; Ono, K. Phytochemistry
1998, 49, 2379; (b) Jovanovic, S. V.; Streenken, S.;
Tosic, M.; Mrjanovic, B.; Simic, M. G. J. Am. Chem.
Soc. 1994, 116, 4846.
4.13. 2-[(2S,3S)-3-(3¦,4¦-Dihydroxyphenyl)-2,3-dihyd-
roxypropyl]-1,3,5-benzenetriol 13
A solution of compound 12 (41 mg, 0.066 mmol) in 2%
HCl–MeOH (2 mL) was stirred for 30 min at 40°C. The
reaction mixture was diluted with EtOAc and washed
with brine. The organic phase was dried over MgSO4,
filtered and concentrated in vacuo. Purification of the
residue by silica gel chromatography (CH2Cl2:MeOH=
10:1) afforded the desired product 13 as a white solid
5. (a) Brown, B. R.; Fuller, M. J. J. Chem. Res. (S) 1986,
140; (b) Nay, B.; Monti, J.-P.; Nuhrich, A.; Deffieux,
G.; Merillon, J.-M.; Vercauteren, J. Tetrahedron Lett.
2000, 41, 9049.
1
(10 mg, 49%). H NMR (CD3OD, 400 MHz) l 2.52
6. (a) Reinier, J.; Nel, J.; Rensburg, H.; Heerden, P.; Fer-
reira, D. J. Chem. Res. (S) 1999, 606; (b) van Rens-
burg, H.; van Heerden, P. S.; Bezuidenhoudt, B. C. B.;
Ferreira, D. Tetrahedron Lett. 1997, 38, 3089; (c) Rens-
burg, H.; Heerden, P. S.; Ferreira, D. J. Chem. Soc.,
Perkin Trans. 1 1997, 3415.
7. Sharpless, K. B.; Amberg, W.; Bennni, Y. L.; Crispino,
G. A.; Hartung, J.; Jeong, K.-S.; Kwong, H.-L.;
Morikawa, K.; Wang, Z.-M.; Xu, D.; Zhang, X.-L. J.
Org. Chem. 1992, 57, 2768.
8. (a) Mitsunobu, O. Chem. Rev. 1981, 1; (b) Lee, B. H.;
Biwas, A.; Miller, M. J. J. Org. Chem. 1986, 51, 106;
(c) Mattingly, P. G.; Kerwin, J. K.; Miller, M. J. J.
Am. Chem. Soc. 1979, 101, 3983.
9. Jew, S.-s.; Kim, H.-a.; Bae, S.-y.; Kim, J.-h.; Park, H.-g.
Tetrahedron Lett. 2000, 41, 7925.
(dd, 1H, J=16.0, 8.3 Hz), 2.83–2.89 (m, 1H), 3.98–4.01
(m, 1H), 4.58 (d, 1H, J=8.3 Hz), 5.95 (s, 2H), 6.72–
6.85 (m, 3H); IR (neat) 1636, 1684, 2361, 2916 cm−1;
LRMS (EI) 308 [M]+.
4.14. (2R,3S)-(+)-2-(3,4-Dihydroxyphenyl)-3,4-dihydro-
2H-chromene-3,5,7-triol, (+)-catechin 1a
To a solution of compound 13 (78 mg, 0.252 mmol)
and triphenylphosphine (99 mg, 0.378 mmol) in anhy-
drous THF (2.5 mL) was added DEAD (59 mL, 0.378
mmol) dropwise. After stirring for 1.5 h at room tem-
perature, the reaction mixture was diluted with EtOAc
and washed with water and brine. The organic phase
was dried over MgSO4, filtered and concentrated in
vacuo. Purification of the residue by silica gel chro-
matography (CH2Cl2:MeOH=10:1) afforded the
desired product 1a as a white solid (37 mg, 50%). [h]D22
10. (a) Barton, D. H. R.; Jaszberenyi, J. Cs.; Tang, D.
Tetrahedron Lett. 1993, 34, 3381; (b) Robins, M. J.;
Wilson, J. S.; Hansske, F. J. Am. Chem. Soc. 1983,
105, 4059; (c) Barton, D. H. R.; McCombie, S. W. J.
Chem. Soc., Perkin Trans. 1 1975, 1574.
1
+16.0 (c 0.1, acetone); H NMR (DMSO-d6, 400 MHz)
l 2.33 (dd, 1H, J=15.9, 7.9 Hz), 2.64 (dd, 1H, J=16.0,
5.2 Hz), 3.74–3.85 (m, 1H), 4.46 (d, 1H, J=7.3 Hz),