Page 9 of 11
Journal of the American Chemical Society
Regioselective Hydrocyanation of Alkenes with Zn(CN)2. Org. Chem.
Products by Catalyst-Controlled Stereoselective Ring-Closing
1
2
3
4
5
6
7
8
Front. 2019, 6, 2037. For other examples of hydrocyanation, see: (i)
Gaspar, B.; Carreira, E. M. Mild Cobalt-Catalyzed Hydrocyanation
of Olefins with Tosyl Cyanide. Angew. Chem. Int. Ed. 2007, 46, 4519.
(j) Arai, S.; Hori, H.; Amako, Y.; Nishida, A. A New Protocol for
Nickel-Catalysed Regio- and Stereoselective Hydrocyanation of
Allenes. Chem. Commun. 2015, 51, 7493. (k) Kristensen, S. K; Eikeland,
E. Z.; Taarning, E.; Lindhardt, A. T.; Skrydstrup, T. Ex situ generation
of stoichiometric HCN and its application in the Pd-catalysed
cyanation of aryl bromides: evidence for a transmetallation step
between two oxidative addition Pd-complexes. Chem. Sci. 2017, 8,
8094.
Metathesis. Nature 2011, 479, 88. (d) Meek, S. J.; O’Brien, R. V.;
Llaveria, J.; Schrock, R. R.; Hoveyda, A. H. Catalytic Z-selective
Olefin Cross-Metathesis for Natural Product Synthesis. Nature 2011,
471, 461. (e) Endo, K.; Grubbs, R. H. Chelated Ruthenium Catalysts
for Z-Selective Olefin Metathesis. J. Am. Chem. Soc. 2011, 133, 8525.
(f) Keitz, B. K.; Endo, K.; Herbert, M. B.; Grubbs, R. H. Z-Selective
Homodimerization of Terminal Olefins with
a Ruthenium
Metathesis Catalyst. J. Am. Chem. Soc. 2011, 133, 9686. (g) Marx, V.
M.; Herbert, M. B.; Keitz, B. K.; Grubbs, R. H. Stereoselective Access
to Z and E Macrocycles by Ruthenium-Catalyzed Z-Selective Ring-
Closing Metathesis and Ethenolysis. J. Am. Chem. Soc. 2013, 135, 94.
(h) Hoveyda, A. H. Evolution of Catalytic Stereoselective Olefin
Metathesis: From Ancillary Transformation to Purveyor of
Stereochemical Identity. J. Org. Chem. 2014, 79, 4763. (i) Herbert, M.
B.; Grubbs, R. H. Z-Selective Cross Metathesis with Ruthenium
Catalysts: Synthetic Applications and Mechanistic Implications.
Angew. Chem. Int. Ed. 2015, 54, 5018.
(14) (a) Tolman, C. A.; Seidel, W. C.; Druliner, J. D.; Domaille, P.
J. Catalytic Hydrocyanation of Olefins by Nickel(0) Phosphite
Complexes - Effects of Lewis Acids. Organometallics 1984, 3, 33. (b)
Casalnuovo, A. L.; RajanBabu, T. V.; Ayers, T. A.; Warren, T. H.
Ligand Electronic Effects in Asymmetric Catalysis: Enhanced
Enantioselectivity in the Asymmetric Hydrocyanation of
Vinylarenes. J. Am. Chem. Soc. 1994, 116, 9869. (c) RajanBabu, T. V.;
Casalnuovo, A. L. Role of Electronic Asymmetry in the Design of
New Ligands:ꢀThe Asymmetric Hydrocyanation Reaction. J. Am.
Chem. Soc. 1996, 118, 6325. (d) Huang, J.; Haar, C.M.; Nolan, S.P.;
Marcone, J.E.; Moloy, K.G. Lewis Acids Accelerate Reductive
Elimination of RCN from P2Pd(R)(CN). Organometallics 1999, 18,
297. (e) Nakao, Y.; Yada, A.; Ebata, S.; Hiyama, T. A Dramatic Effect
of Lewis-Acid Catalysts on Nickel-Catalyzed Carbocyanation of
Alkynes. J. Am. Chem. Soc. 2007, 129, 2428. (f) Bini, L.; Müller, C.;
Vogt, D. Mechanistic Studies on Hydrocyanation Reactions.
ChemCatChem 2010, 2, 590. (g) Rajanbabu, T. V. Hydrocyanation of
Alkenes and Alkynes. Org. React. 2011, 75, 1. (h) Ni, S.-F.; Yang, T.-
L.; Dang, L. Transfer Hydrocyanation by Nickel(0)/Lewis Acid
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(10) For a review, see: Kim, J.; Kim, H. J.; Chang, S. Synthesis of
Aromatic Nitriles Using Nonmetallic Cyano-Group Sources. Angew.
Chem. Int. Ed. 2012, 51, 11948.
(11) For selected examples, see: (a) Kim, J.; Chang, S. A New
Combined Source of “CN” from N,N-Dimethylformamide and
Ammonia in the Palladium-Catalyzed Cyanation of Aryl C–H
Bonds. J. Am. Chem. Soc. 2010, 132, 10272. (b) Kim, J.; Choi, J.; Shin,
K.; Chang, S. Copper-Mediated Sequential Cyanation of Aryl C−B
and Arene C−H Bonds Using Ammonium Iodide and DMF. J. Am.
Chem. Soc. 2012, 134, 2528. (c) Pawar, A. B.; Chang, S. Catalytic
Cyanation of Aryl Iodides Using DMF and Ammonium Bicarbonate
as the Combined Source of Cyanide: a Dual Role of Copper
Catalysts. Chem. Commun. 2014, 50, 448. (d) Senecal, T. D.; Shu, W.;
Buchwald, S. L. A General, Practical Palladium-Catalyzed Cyanation
of (Hetero)Aryl Chlorides and Bromides. Angew. Chem. Int. Ed. 2013,
52, 10035. (e) Yang, Y.; Buchwald, S. L. Copper-Catalyzed
Regioselective ortho C–H Cyanation of Vinylarenes. Angew. Chem.
Int. Ed. 2014, 53, 8677. (f) Yu, P.; Morandi, B. Nickel-Catalyzed
Cyanation of Aryl Chlorides and Triflates Using Butyronitrile:
Merging Retro-Hydrocyanation with Cross-coupling. Angew. Chem.
Int. Ed. 2017, 56, 15693. (g) Huang, Y.; Yu, Y.; Zhu, Z.; Zhu, C.; Cen,
J.; Li, X.; Wu, W.; Jiang, H. Copper-Catalyzed Cyanation of
N‑Tosylhydrazones with Thiocyanate Salt as the “CN” Source. J.
Org. Chem. 2017, 82, 7621. (h) Michel, N. W. M.; Jeanneret, A. D. M.;
Kim, H.; Rousseaux, S. A. L. Nickel-Catalyzed Cyanation of Benzylic
and Allylic Pivalate Esters. J. Org. Chem. 2018, 83, 11860. (i) Ueda, Y.;
Tsujimoto, N.; Yurino, T.; Tsurugi, H.; Mashima, K. Nickel-
Catalyzed Cyanation of Aryl Halides and Triflates Using
Acetonitrile via C–CN Bond Cleavage Assisted by 1,4-
bis(trimethylsilyl)-2,3,5,6-tetramethyl-1,4-dihydropyrazine. Chem.
Sci. 2019, 10, 994. (j) Holmberg-Douglas, N.; Nicewicz, D. A. Arene
Cyanation via Cation-Radical Accelerated-Nucleophilic Aromatic
Substitution. Org. Lett. 2019, 21, 7114. (k) Xu, S.; Teng, J.; Yu, J.-T.;
Sun, S.; Cheng, J. Copper-Mediated Direct Cyanation of Heteroarene
and Arene C−H Bonds by the Combination of Ammonium and DMF.
Org. Lett. 2019, 21, 9919. (l) Chen, H.; Mondal, A.; Wedi, P.; van
Gemmeren, M. Dual Ligand-Enabled Nondirected C−H Cyanation
of Arenes. ACS Catal. 2019, 9, 1979.
Cooperative
Catalysis,
Mechanism
Investigation,
and
Computational Prediction of Shuttle Catalysts. Organometallics 2017,
36, 2746.
(15) For a review on the role of Lewis acids in transition metal
catalysis, see: Becica, J.; Dobereiner, G.E. The roles of Lewis acidic
additives in organotransition metal catalysis. Org. Biomol. Chem.
2019, 17, 2055.
(16) Sammelson, R. E.; Allen, M. J. A Convenient and Selective
One-Pot Method for the Synthesis of Monosubstituted Secondary
Alkyl Malononitriles. Synthesis 2005, 543.
(17) While malononitrile, from which the HCN donors 4a-g are
synthesized, is easier to handle than HCN care should be taken when
using malononitrile as it is toxic. See: Malononitrile; MSDS No.
M1407; Sigma-Aldrich Company: Gillingham, Dorset, May 07, 2020.
(18) For examples of C–X oxidative addition adjacent to nitriles,
see: (a) Cannes, C.; Condon, S.; Durandetti, M.; Périchon, J.; Nédélec,
J.-Y. Nickel-Catalyzed Electrochemical Couplings of Vinyl Halides:
Synthetic and Stereochemical Aspects. J. Org. Chem. 2000, 65, 4575.
(b) Strotman, N. A.; Sommer, S.; Fu, G. C. Hiyama Reactions of
Activated and Unactivated Secondary Alkyl Halides Catalyzed by a
Nickel/Norephedrine Complex. Angew. Chem. Int. Ed. 2007, 46, 3556.
(c) He, A.; Falck, J. R. Stereospecific Suzuki Cross-Coupling of Alkyl
α-Cyanohydrin Triflates. J. Am. Chem. Soc. 2010, 132, 2524. (d) Yang,
Y.; Tang, S.; Liu, C.; Zhang, H.; Sun, Z.; Lei, A. Novel α-Arylnitriles
Synthesis via Ni-Catalyzed Cross-Coupling of α-Bromonitriles with
Arylboronic Acids Under Mild Conditions. Org. Biomol. Chem. 2011,
9, 5343. (e) Choi, J.; Fu, G. C. Catalytic Asymmetric Synthesis of
(12) The relative gas-phase free energies for 2-
phenylpropionitrile and 3-phenylpropionitrile were calculated (see
SI for details). It was found that the lowest energy conformer of the
linear isomer, 3-phenylpropionitrile, is more stable than the lowest
energy conformer of the branched isomer, 2-phenylpropionitrile, by
1.3 kcal/mol.
(13) (a) Flook, M. M.; Jiang, A. J.; Schrock, R. R.; Müller, P.;
Hoveyda, A. H. Z-Selective Olefin Metathesis Processes Catalyzed
by
a Molybdenum Hexaisopropylterphenoxide Monopyrrolide
Complex. J. Am. Chem. Soc. 2009, 131, 7962. (b) Jiang, A. J.; Zhao, Y.;
Schrock, R. R.; Hoveyda, A. H. Highly Z-Selective Metathesis
Homocoupling of Terminal Olefins. J. Am. Chem. Soc. 2009, 131,
16630. (c) Yu, M.; Wang, C.; Kyle, A. F.; Jakubec, P.; Dixon, D. J.;
Schrock, R. R.; Hoveyda, A. H. Synthesis of Macrocyclic Natural
ACS Paragon Plus Environment