A R T I C L E S
Wang et al.
Figure 1. Structure of deuterio-1b determined by single-crystal neutron diffraction. The two equimolar epimers are disordered on the same crystallographic
site. Atoms are drawn at their 50% probability level. Left: syn,syn-epimer. Right: syn,anti-epimer. Atom colors: H, orange; D, green; C, blue; O, red.30
Table 1. Site Occupancies of H and D Atoms at the â-Position As Determined by Neutron Diffraction of Monocrystalline Deuterio-1b30
atom
occupancy
total occupancy
total H/D ratio
site H/D ratio
0.908(9) (syn)
1.049(9) (anti)
D syn/anti ratio
0.518(8) (syn)
0.482(8) (anti)
H-syn
H-anti
D-syn
D-anti
0.476(6)
0.512(6)
0.524(6)
0.488(6)
0.988(9)
0.976(9)
1.012(9)
conducted in the presence of silane.20,21 This mechanistic motif
is well recognized for catalytic reactions of early transition
metals, actinides, and lanthanides.22 More recently, σ-bond
metathesis pathways have been proposed for catalytic reactions
of late transition metals with silanes and boranes.23
process,25 which (although subject to debate26) is the commonly
accepted mechanism for alkene hydrosilylation.
Scheme 3
Given the preceding discussion, a catalytic mechanism
predicated on a Co(I)-Co(III) cycle is proposed as a working
model (Scheme 3). Oxidative addition of silane to LnCo(I)
affords hydrido-cobalt species I. Hydrometalation of the enone
provides cobalt enolate II, which undergoes carbonyl addition
to the appendant aldehyde to provide cobalt-alkoxide III.
Oxygen-silicon reductive elimination liberates the aldol product
in the form of the silyl ether and regenerates LnCo(I) to com-
plete the catalytic cycle. An analogous catalytic cycle is
envisioned for the related Michael cycloreduction. Evolution
of elemental hydrogen is observed throughout the reaction
suggesting competitive dehydrogenative coupling of silane.24
The proposed mechanism bears similarity to the Chalk-Harrod
A related mechanistic possibility involves oxygen-silicon
reductive elimination at the stage of the cobalt enolate II
followed by condensation of the resulting silyl enol ether with
the appendant aldehyde. This pathway is observed for the
intermolecular Rh-catalyzed reductive aldol reaction utilizing
dichloromethylsilane as terminal reductant.8h Here, the inter-
mediate enol silane was isolated and exposed to benzaldehyde
in the absence of catalyst to provide the syn-aldol product.27
For the cycloreductions reported herein, this pathway is unlikely.
While the spontaneous aldol condensation of trichlorosilyl enol
ethers and related ketene acetals has been reported,28 aliphatic
enol silanes covalently appended to aldehydes and capable of
five-membered ring formation do not spontaneously react.29
Deuterium labeling studies employing d3-phenylsilane support
the proposed mechanism. Exposure of 1a to d3-phenylsilane
under standard conditions results in the formation of the
monodeuterated aldol cycloreduction product deuterio-1b as an
equimolar mixture of stereoisomers (Figure 1). The stereochem-
ical assignment deuterio-1b was established by 1H NMR
analysis and single-crystal neutron diffraction analysis, the latter
enabling a precise assessment of the site occupancy of deuterium
(11) Aldol cyclizations have been catalyzed by antibodies and chiral amines:
(a) List, B.; Lerner, R. A.; Barbas, C. F., III. Org. Lett. 1999, 1, 59. (b)
Eder, U.; Sauer, G.; Wiechert, R. Angew. Chem., Int. Ed. Engl. 1971, 10,
496. (c) Hajos, Z. G.; Parrish, D. R. J. Org. Chem. 1974, 39, 1615. (d)
Agami, C.; Platzer, N.; Sevestre, H. Bull. Soc. Chim. Fr. 1987, 2, 358. (e)
Eder, U.; Weichert, R.; Sauer, G. German Patent DE 2014757, Oct. 7, 1971.
(12) Hydride-mediated aldol and Michael cycloreductions have been de-
scribed: Suwa, T.; Nishino, K.; Miyatake, M.; Shibata, I.; Baba, A.
Tetrahedron Lett. 2000, 41, 3403.
(13) An intramolecular Mukaiyama-Michael addition has been reported: Jung,
M. E.; McCombs, C. A.; Takeda, Y.; Pan, Y.-G. J. Am. Chem. Soc. 1981,
103, 6677.
(14) Baik, T.-G.; Luiz, A. L.; Wang, L.-C.; Krische, M. J. J. Am. Chem. Soc.
2001, 123, 5112.
(15) Baik, T.-G.; Luiz, A. L.; Wang, L.-C.; Krische, M. J. J. Am. Chem. Soc.
2001, 123, 6716.
(16) Co(dpm)2 was characterized by single-crystal X-ray diffraction. See
Supporting Information for crystallographic data.
(17) Halpern, J. Acc. Chem. Res. 1970, 3, 386.
(18) Socol, S. M.; Verkade, J. G. Inorg. Chem. 1986, 25, 2658.
(19) Topich, J.; Halpern, J. Inorg. Chem. 1979, 18, 1339.
(20) (a) Kablaoui, N. M.; Buchwald, S. L. J. Am. Chem. Soc. 1995, 117, 6785.
(b) Kablaoui, N. M.; Buchwald, S. L. J. Am. Chem. Soc. 1996, 118, 3182.
(21) (a) Crowe, W. E.; Rachita, M. J. J. Am. Chem. Soc. 1995, 117, 6787. (b)
Crowe, W. E.; Vu, A. T. J. Am. Chem. Soc. 1996, 118, 1557.
(22) For reviews, see: (a) Folga, E.; Woo, T.; Ziegler, T. In Theoretical Aspects
of Homogeneous Catalysis; van Leeuwen, P. W. N. M., Morokuma, K.,
van Lenthe, J. H., Eds.; Kluwer: Dordrecht, The Netherlands, 1995; p 115
and references therein. (b) Arndtsen, B. A.; Bergman, R. G.; Mobley, T.
A.; Peterson, T. H. Acc. Chem. Res. 1995, 28, 154. (c) Crabtree, R. H.
Chem. ReV. 1995, 95, 987. (d) Jones, W. D. In SelectiVe Hydrocarbon
ActiVation; Davies, J. A., Watson, P. L., Greenberg, A., Liebman, J. F.,
Eds.; Wiley-VCH: Weinheim, Germany, 1990; pp 113-148.
(23) (a) Hartwig, J. F.; Bhandari, S.; Rablen, P. R. J. Am. Chem. Soc. 1994,
116, 1839. (b) Milet, A.; Dedieu, A.; Kapteijn, G.; van Koten, G. Inorg.
Chem. 1997, 36, 3223. (c) LaPointe, A. M.; Rix, F. C.; Brookhart, M. J.
Am. Chem. Soc. 1997, 119, 906. (d) Moritani, Y.; Appella, D. H.;
Jurkauskas, V.; Buchwald, S. L. J. Am. Chem. Soc. 2000, 122, 6797.
(24) Rosenberg, L.; Davis, C. W.; Yao, J. J. Am. Chem. Soc. 2001, 123, 5120
and references therein.
(25) Chalk, A. J.; Harrod, J. F. J. Am. Chem. Soc. 1965, 87, 16.
(26) (a) Chatani, N.; Kodama, T.; Kajikawa, Y.; Murakami, H.; Kakiuchi, F.;
Ikeda, S.-I.; Murai, S. Chem. Lett. 2000, 14. (b) Brookhart, M.; Grant, B.
E. J. Am. Chem. Soc. 1993, 115, 2151. (c) Bosnich, B. Acc. Chem. Res.
1998, 31, 667 and references therein.
(27) Zhao, C.-X.; Bass, J.; Morken, J. P. Org. Lett. 2001, 3, 2839.
(28) Denmark, S. E.; Wong, K. T.; Stavenger, R. A. J. Am. Chem. Soc. 1997,
119, 2333.
(29) (a) Enda, J.; Kuwajima, I. J. Am. Chem. Soc. 1985, 107, 5495. (b) Enda,
J.; Matsutani, T.; Kuwajima, I. Tetrahedron Lett. 1984, 25, 5307.
9
9450 J. AM. CHEM. SOC. VOL. 124, NO. 32, 2002