Constants in Re(I) Chromophore-Quencher Complexes
J. Phys. Chem. A, Vol. 106, No. 34, 2002 7805
Given the approximations involved, the agreement between
calculated and experimental values is reasonable. However, it
is notable that the calculated values are lower than the
experimental values in all three cases. There may be contribu-
tions to these discrepancies from the low emission intensities
with a concomitant uncertainty in the emission spectral fitting
parameters, and the use of the calculated absorption band to
Re(CO)3(ONQ)]. Supplementary Figure 1, with time-resolved
nanosecond transient absorption difference spectra of fac-[(4,4′-
tBu2bpy)Re(CO)3(ONQ)]. Supplementary Figure 2, with time-
resolved nanosecond transient absorption difference spectra of
fac-[(4,4′-Me2bpy)Re(CO)3]2(AFA). This material is available
References and Notes
evaluate HDA
.
There may be another explanation. The RS states are largely
triplet in character and only weakly coupled to the singlet ground
states by spin-orbit coupling. There are additional, largely
(1) Omberg, K. M.; Chen, P. Y.; Meyer, T. J. Spectroscopic Deter-
mination of Electron-Transfer Barriers and Rate Constants; Omberg, K.
M., Chen, P. Y., Meyer, T. J., Eds.; John Wiley & Sons: New York, 1999;
Vol. 106.
1
singlet RS states, RS, at higher energy. In the MLCT excited
(2) Kubo, R.; Toyazara, Y. Prog. Theor. Phys. 1955, 13, 160.
(3) Lax, M.; Burstein, E. Phys. ReV. 1955, 100, 592.
(4) Hush, N. S. Coord. Chem. ReV. 1985, 64, 135-157.
(5) Hush, N. S. Electrochim. Acta 1968, 13, 1005.
(6) Hush, N. S. Prog. Inorg. Chem. 1967, 8, 391.
(7) Englman, R.; Jortner, J. Mol. Phys. 1970, 18, 145-164.
(8) Bixon, M.; Jortner, J. J. Chem. Phys. 1968, 48, 715-726.
(9) Ulstrup, J.; Jortner, J. J. Chem. Phys. 1975, 63, 4358.
(10) Newton, M. D.; Sutin, N. Annu. ReV. Phys. Chem. 1984, 35, 437-
480.
state manifolds of Ru and Os polypyridyl complexes, the lowest
lying, largely singlet states are 1000’s of cm-1 to higher energy.
In the RS states of these Re complexes, where spin-spin
coupling is expected to be weak to moderate, the energy gaps
1
1
to RS may be small and RS thermally accessible.
This opens an additional, thermally activated channel for back
electron transfer, 3MLCT f 3RS / 1RS f 1GS. There is
negligible spin inhibition to back electron transfer and the
(11) Marcus, R. A.; Sutin, N. Biochim. Biophys. Acta 1985, 811, 265-
1
1
3
1
transition RS f GS. Interconversion between RS and RS
states is expected to be rapid because of spin-orbit induced
paramagnetic relaxation in the dπ5 ReII core.86 It should be
possible to explore the intervention of a 1RS channel by
temperature-dependent and/or magnetic field-dependent lifetime
measurements.71,86
322.
(12) Siders, P.; Marcus, R. A. J. Am. Chem. Soc. 1981, 103, 748.
(13) Marcus, R. A. J. Phys. Chem. 1989, 93, 3078.
(14) Myers, A. B. Chem. ReV. 1996, 96, 911.
(15) Caspar, J. V.; Sullivan, B. P.; Kober, E. M.; Meyer, T. J. Chem.
Phys. Lett. 1982, 91, 91-95.
(16) Kober, E. M.; Caspar, J. V.; Lumpkin, R. S.; Meyer, T. J. J. Phys.
Chem. 1986, 90, 3722-3734.
The successful use of eq 15 for νET in eq 16, even for the
BIQD complex for which HDA ≈ 153 cm-1, is notable. These
equations are derived from time-dependent perturbation theory.
Application of eq 15 assumes the “nonadiabatic” limit with νET
dictated by the electron tunneling frequency. In thermally
activated processes in the normal region, HDA values of this
magnitude would be sufficient to ensure “adiabatic” electron
transfer with the transferring electron always in equilibrium with
the coupled nuclear motion or motions. Under these conditions,
the frequency of barrier crossing is dictated by the dynamics of
the slowest coupled nuclear motion or motions, typically in the
(17) Barqawi, K. R.; Murtaza, Z.; Meyer, T. J. J. Phys. Chem. 1991,
95, 47-50.
(18) Worl, L. A.; Strouse, G. F.; Younathan, J. N.; Baxter, S. M.; Meyer,
T. J. J. Am. Chem. Soc. 1990, 112, 7571-7578.
(19) Bixon, M.; Jortner, J.; Cortes, J.; Heitele, J.; Michel-Beyerle, M.
E. J. Phys. Chem. 1994, 98, 1289.
(20) Gould, S.; Gray, K. H.; Linton, R. W.; Meyer, T. J. Inorg. Chem.
1992, 31, 5521-5525.
(21) Gould, I. R.; Young, R. H.; Moody, R. E.; Farid, S. J. Phys. Chem.
1991, 95, 2068.
(22) Gould, I. R.; Young, R. H.; Mueller, L. J.; Albrecht, A. C.; Farid,
S. J. Am. Chem. Soc. 1994, 116, 3147.
(23) Gould, I. R.; Young, R. H.; Mueller, L. J.; Albrecht, A. C.; Farid,
S. J. Am. Chem. Soc. 1994, 116, 8188.
(24) Bixon, M.; Jortner, J.; Verhoeven, J. W. J. Am. Chem. Soc. 1994,
solvent, rather than by HDA
.
Equation 15 has even been applied successfully to electron
116, 7349.
(25) Gould, I. R.; Farid, S. Acc. Chem. Res. 1996, 29, 522-528.
(26) Gust, D.; Moore, T. A.; Moore, A. L. Science 1990, 249, 199.
(27) Nelsen, S. F.; Ismagilov, R. F.; Trieber, D. A., II Science 1997,
278, 846-849.
transfer in organic donor-acceptor complexes by Gould, Farid,
and co-workers, where HDA is 1000’s of cm-1 20-24,69
The
.
success of this approach may be a consequence of the fact that
these reactions occur deeply in the inverted region and are
dominated by vibrational quantum transitions. There is no
requirement in the dynamics for thermal activation to a barrier
crossing dominated by slow solvent modes. The solvent plays
a different role in providing the continuum or near continuum
of levels required for energy conservation for the individual
vibrational channels.
(28) Nelson, S. F.; Ramin, M. T.; Wolff, J. J.; Powell, J. J. J. Am. Chem.
Soc. 1997, 119, 6863.
(29) Derr, D. L.; Elliott, C. M. J. Chem. Phys. A 1999, 103, 7880.
(30) Moore, A. L.; Moore, T. A.; Macpherson, A. N. Pure and Appl.
Chem. 1997, 69, 2111.
(31) Gust, D.; Moore, T. A. Science 1989, 244, 35-41.
(32) Wasielewski, M. R. Chem. ReV. 1992, 92, 435.
(33) Wasielewski, M. R.; Gaines, G. L., III.; O’Neill, M. P.; Svec, W.
A.; Niemcayk, M. P. J. Am. Chem. Soc. 1990, 112, 4559.
(34) Waslielewski, M. R.; Niemczyk, M. P.; Svec, W.; Pewitt, E. B. J.
Am. Chem. Soc. 1985, 107, 5662.
(35) Schanze, K. S.; MacQueen, D. B.; Perkins, T. A.; Cabana, L. A.
Coord. Chem. ReV. 1993, 122, 63.
(36) Schanze, K. S.; Walters, K. A. Photoinduced Electron Transfer in
Metal-Organic Dyads; Schanze, K. S., Walters, K. A., Eds.; Marcel
Delcher: New York, 1998; Vol. 2.
Back electron transfer in the OQD and AFA2- complexes is
remarkably slow with the lifetime of the associated RS state
reaching 15 µs for the former. These long lifetimes are largely
due to the combination of orbital orthogonality and the spin
change that accompanies electron transfer. This result has
important implications for the design of molecular assemblies
for energy conversion and long-term storage of photoproduced
redox equivalents. It shows that proper use of electronic effects
can greatly influence the lifetimes of electron-transfer transients,
even in simple molecular assemblies.
(37) Balzani, V.; Scandola, F. Supramolecular Photochemistry.; Ellis
Horwood: New York, 1991.
(38) Chen, P.; Duesing, R.; Graff, D. K.; Meyer, T. J. J. Phys. Chem.
1991, 95, 5850-5858.
(39) Meyer, T. J. Acc. Chem. Res. 1989, 22, 163-170.
(40) Petersen, J. D.; Murphy, W. R.; Sahai, R.; Brewer, K. J.; Ruminski,
R. R. Coord. Chem. ReV. 1985, 64, 261-272.
(41) Sullivan, B. P.; Abrun˜a, H. O.; Finklea, D. J.; Salmon, D. J.; Nagle,
J. K.; Meyer, T. J.; Sprintschnik, H. Chem. Phys. Lett. 1978, 58, 389.
(42) Mecklenburg, S. L.; McCafferty, D. G.; Schoonover, J. R.; Peek,
B. M.; Erickson, B. W.; Meyer, T. J. Inorg. Chem. 1994, 33, 2974-2983.
(43) Opperman, K. A.; Mecklenburg, S. L.; Meyer, T. J. Inorg. Chem.
1994, 33, 5295-5301.
Acknowledgment. This work was supported by the National
Science foundation under Grant No. CHE-9705724 to T.J.M.
Supporting Information Available: Supplementary Table
1, with atomic positional parameters for fac-[(4,4′-tBu2bpy)-