presence of amine base.3,4 Another system involves the use of
Et2Zn or Me2Zn to prepare in situ the alkynylzincs.5-8 In this
respect, direct use of the readily available and inexpensive
unmodified 1,1′-bi-2-naphthol (BINOL) in combination with Ti-
(OiPr)4 and Et2Zn or Me2Zn has resulted in a series of exciting
findings.9,10
Facile, Mild, and Highly Enantioselective
Alkynylzinc Addition to Aromatic Aldehydes by
BINOL/N-Methylimidazole Dual Catalysis
Fei Yang, Peihua Xi, Li Yang, Jingbo Lan, Rugang Xie, and
Jingsong You*
BINOL-Ti complex can catalyze alkyne addition to alkyl,
aryl, and R,â-unsaturated aldehydes with high ee values and
good yields in the presence of Et2Zn.9a,b However, in these
systems, higher reaction temperatures are generally required in
the first step to prepare the corresponding alkynylzinc from the
terminal alkyne and alkylzinc reagent.9a-c The high temperature
for the preparation of the alkynylzinc reagents may cause the
decomposition of certain functional alkynes. Although the use
of Me2Zn instead of Et2Zn can lower the reaction temperature
in the formation of alkynylzinc, these BINOL-Ti(OiPr)4-Me2-
Zn systems generally require a separate step to synthesize
alkynylzinc.9d,10
Key Laboratory of Green Chemistry and Technology of Ministry
of Education, College of Chemistry, and State Key Laboratory
of Biotherapy, West China Hospital, West China Medical
School, Sichuan UniVersity, 29 Wangjiang Road,
Chengdu 610064, People’s Republic of China
ReceiVed April 17, 2007
Quite recently, Pu et al. discovered that the addition of
hexamethylphosphoramide (HMPA) greatly accelerates the
reaction of Et2Zn with terminal alkynes at room temperature
while maintaining the high enantioselectivity for the addition
to aldehydes.11 The mild condition for the formation of
alkynylzinc reagents avoids the reflux of the toluene solutions
of the alkynes and Et2Zn as previously reported9a-c and enables
the use of functional alkynes in this asymmetric reaction with
high enantioselectivity. However, the protocol requires subs-
toichiometric quantities of chiral BINOL (40 mol %), 2 equiv
The dual Lewis acid/base catalytic system, generated from
N-methylimidazole (NMI), (R)-1,1′-bi-2-naphthol [(R)-
BINOL], and Ti(OiPr)4, effectively catalyzes the enantiose-
lective alkynylation of aldehydes in the presence of Et2Zn
in good yields and excellent enantioselectivities of up to 94%
ee at room temperature. The mild reaction conditions make
it possible to use functional alkynes in this asymmetric
addition.
(3) (a) Frantz, D. E.; Fassler, R.; Carreira, E. M. J. Am. Chem. Soc. 2000,
122, 1806. (b) Anand, N. K.; Carreira, E. M. J. Am. Chem. Soc. 2001, 123,
9687. (c) Fa´ssler, R.; Tomooka, C. S.; Frantz, D. E.; Carreira, E. M. Proc.
Natl. Acad. Sci. U.S.A. 2004, 101, 5843.
(4) The use of stoichiometric amounts of chiral amino alcohol-based
ligands: (a) Jiang, B.; Chen, Z. L.; Xiong, W. N. Chem. Commun. 2002,
1524. (b) Chen, Z. L.; Xiong, W. N.; Jiang, B. Chem. Commun. 2002, 2098.
(c) Jiang, B.; Si, Y. G. AdV. Synth. Catal. 2004, 346, 669.
(5) Bisoxazolidine-catalyzed enantioselective alkynylation of aromatic
aldehydes at low temperature (-4 to -15 °C): Wolf, C.; Liu, S. J. Am.
Chem. Soc. 2006, 128, 10996.
(6) Catalytic procedures based on amino alcohol ligands focus on the
addition of phenylacetylene to aromatic aldehydes, while few address the
need to utilize functional alkynes: (a) Xu, Z.; Wang, R.; Xu, J.; Da, C.;
Yan, W.; Chen, C. Angew. Chem., Int. Ed. 2003, 42, 5747. (b) Xu, Z.;
Chen, C.; Xu, J.; Miao, M.; Yan, W.; Wang, R. Org. Lett. 2004, 6, 1193.
(c) Dahmen, S. Org. Lett. 2004, 6, 2113. (d) Fang, T.; Du, D. M.; Lu, S.
F.; Xu, J. Org. Lett. 2005, 7, 2081.
(7) Dinuclear Zn-catalyzed asymmetric alkynylation of R,â-unsaturated
aldehydes at 4 °C: Trost, B. M.; Weiss, A. H.; von Wangelin, A. J. J. Am.
Chem. Soc. 2006, 128, 8.
(8) Selected examples for modified BINOLs as ligands: (a) Moore, D.;
Huang, W. S.; Xu, M. H.; Pu, L. Tetrahedron Lett. 2002, 43, 8831. (b) Xu,
M. H.; Pu, L. Org. Lett. 2002, 4, 4555. (c) Liu, Q. Z.; Xie, N. S.; Luo, Z.
B.; Cui, X.; Cun, L. F.; Gong, L. Z.; Mi, A. Q.; Jiang, Y. Z. J. Org. Chem.
2003, 68, 7921. (d) Liu, L.; Pu, L. Tetrahedron 2004, 60, 7427. (e) Li, Z.
B.; Pu, L. Org. Lett. 2004, 6, 1065.
(9) (a) Moore, D.; Pu, L. Org. Lett. 2002, 4, 1855. (b) Gao, G.; Moore,
D.; Xie, R. G.; Pu, L. Org. Lett. 2002, 4, 4143. (c) Marshall, J. A.; Bourbeau,
M. P. Org. Lett. 2003, 5, 3197. (d) Lu, G.; Li, X.; Chan, W. L.; Chan, A.
S. C. Chem. Commun. 2002, 172.
(10) The method also required 1 equiv of an additional chiral sulfonamide
ligand and was only applied in the addition of phenylacetylene to aromatic
aldehydes below 0 °C for 1-2 days: Li, X. S.; Lu, G.; Kwok, W. H.;
Chan, A. S. C. J. Am. Chem. Soc. 2002, 124, 12636.
(11) (a) Gao, G.; Xie, R. G.; Pu, L. Proc. Natl. Acad. Sci. U.S.A. 2004,
101, 5417. (b) Gao, G.; Wang, Q.; Yu, X. Q.; Xie, R. G.; Pu, L. Angew.
Chem., Int. Ed. 2006, 45, 122. (c) Rajaram, A. R.; Pu, L. Org. Lett. 2006,
8, 2019.
The catalytic asymmetric alkynylzinc addition to aldehydes
can provide a very convenient route to the corresponding chiral
secondary propargylic alcohols,1 which have been identified as
versatile building blocks for fine chemicals, pharmaceuticals,
and natural products.2 It is therefore not surprising that great
efforts have recently been directed toward the development of
this important asymmetric reaction, and two general catalytic
systems are currently considered to be the most practical. One
has recently been discovered by Carreira and co-workers, using
stoichiometric or catalytic quantities of Zn(OTf)2, N-methyl-
ephedrine, and Et3N to afford the desired products in high yields
and enantioselectivities in the addition of terminal acetylenes
to aldehydes.3 In this approach, the zinc alkynylides are
generated in situ from terminal alkynes and Zn(OTf)2 in the
(1) For reviews, see: (a) Frantz, D. E.; Fassler, R.; Tomooka, C. S.;
Carreira, E. M. Acc. Chem. Res. 2000, 33, 373. (b) Pu, L.; Yu, H. B. Chem.
ReV. 2001, 101, 757. (c) Pu, L. Tetrahedron 2003, 59, 9873-9886. (d)
Cozzi, P. G.; Hilgraf, R.; Zimmermann, N. Eur. J. Org. Chem. 2004, 4095.
(2) Selected examples: (a) Marshall, J. A.; Wang, X. J. J. Org. Chem.
1992, 57, 1242. (b) Meyers, A. G.; Zhang, B. J. Am. Chem. Soc. 1996,
118, 4492. (c) Tse, B. J. Am. Chem. Soc. 1996, 118, 7094. (d) Fox, M. E.;
Li, C.; Marino, J. P.; Overman, L. E, Jr. J. Am. Chem. Soc. 1999, 121,
5467. (e) Trost, B. M.; Krische, M. J. J. Am. Chem. Soc. 1999, 121, 6131.
(f) Sugiyama, H.; Yokokawa, F.; Shioiri, T. Org. Lett. 2000, 2, 2149. (g)
Aschwanden, P.; Carreira, E. M. In Acetylene Chemistry: Chemistry,
Biology and Material Science; Diederich, F., Stang, P. J., Tykwinski, R.
R., Eds.; Wiley-VCH: Weinheim, Germany, 2005; p 101.
10.1021/jo0707535 CCC: $37.00 © 2007 American Chemical Society
Published on Web 06/08/2007
J. Org. Chem. 2007, 72, 5457-5460
5457