3280
Y. Yamaguchi et al. / Tetrahedron Letters 43 (2002) 3277–3280
References
16 H); 13C NMR (75.4 MHz, CDCl3), l 58.1, 86.5, 86.6,
122.6, 131.6; IR (KBr, cm−1) 2894, 2846, 2231, 1508,
1496, 1442, 1363, 1346, 1257, 1241, 1081, 1033, 1020, 970,
883, 835, 655, 545.
1. (a) Morrison, D. L.; Ho¨ger, S. J. Chem. Soc., Chem.
Commun. 1996, 2313–2314; (b) Anderson, H. L.; Sanders,
J. K. M. J. Chem. Soc., Chem. Commun. 1989, 1714–
1715; (c) Mackeay, L. G.; Anderson, H. L.; Sanders, J.
K. M. J. Chem. Soc., Chem. Commun. 1992, 43–44; (d)
Anderson, S.; Neidlein, U.; Gramlich, V.; Diedrich, F.
Angew. Chem., Int. Ed. Engl. 1995, 34, 1596–1597.
2. Yamaguchi, Y.; Kobayashi, S.; Wakamiya, T.; Matsub-
ara, Y.; Yoshida, Z. J. Am. Chem. Soc. 2000, 122,
7404–7405.
3. Yoshida, Z. Presented at The IUPAC Third International
Symposium on Functional Dyes, July 16–21, 1995, Santa
Cruz, USA, Opening Lecture, and at Japan–Northern
Baltic Symposium on Synthetic Chemistry, June 25–26,
1996, Helsinki, Finland, Abstracts PL18.
The saturated derivative of 3: 1H NMR (300 MHz,
CDCl3), l 1.89 (tt, J=6.6, 7.2 Hz, 8H), 2.67 (t, J=7.2
Hz, 8H), 3.39 (t, J=6.6 Hz, 8H), 6.98 (s, 2H), 7.00 (d,
J=7.2 Hz, 4H), 7.18 (t, J=7.2 Hz, 2H); HRMS (EI, 70
eV) calcd 704.4805, found 704.4732.
The saturated derivative of 4: 1H NMR (300 MHz,
CDCl3), l 1.87 (tt, J=6.5, 7.5 Hz, 16H), 2.67 (t, J=7.5
Hz, 16H), 3.37 (t, J=6.5 Hz, 16H), 7.09 (s, 16H); 13C
NMR (75.4 MHz, CDCl3), l 31.2, 31.8, 69.6, 128.4,
139.3; HRMS (EI, 70 eV) calcd 704.4805, found
704.4750.
10. Crystal data for 4·2C6H6: C60H44O4, M=829.01, mono-
clinic, P21/n, a=15.343(4), b=5.8076(12), c=26.216(6)
3
,
,
4. Fuji and co-workers have reported oxacalix[3]arenes to
form a sitting the center-type complex with C60: Tsubaki,
K.; Tanaka, K.; Kinoshita, T.; Fuji, K. J. Chem. Soc.,
Chem. Commun. 1998, 859–860.
A, i=104.925(5)°, V=2257.2(8) A , Z=2, Dcalcd=1.220
g/cm3, R=0.048, RW=0.074, Rigaku Mercury, 26018
measured reflections, Mo Ka, 5161 unique (Rint=0.060),
312 variables [I>−10.00|(I)].
5. We have also reported complexation of C60 with
nanoscale crown ether derivatives: Yoshida, Z.; Matsub-
ara, Y.; Yamaguchi, Y. Japan Society for the Promotion
of Science 116 Committee Report 1999, 51, 203–206.
6. Oda and co-workers have reported the synthesis of arene-
cyclynes (Kawase, T.; Ueda, N.; Tanaka, K.; Seirai, Y.;
Oda, M. Tetrahedron Lett. 2001, 42, 5509–5511) and the
formation of an inclusion complex with C60 (private
communication).
The X-ray structures of 3, 3-C60 complex and 4-C60
complex are not established yet, because of difficulty in
obtaining single crystals for X-ray analysis.
11. Oxaarenecyclynes 3 and 4 did not show concentration
1
dependence in the H NMR spectra in CDCl3 (10−2–10−4
M), indicating that these did not tend to self-associate.
12. Significant shifts in 1H and 13C NMR spectra were not
observed for the supramolecular complexes of C60 with 3
or 4.
7. For a review, see: Sonogashira, K. In Comprehensive
Organic Synthesis; Trost, B. M.; Fleming, I., Eds.; Perga-
mon: Oxford, 1991; Vol. 3, pp. 521–549.
13. (a) Rabie, U. M.; Patal, B. P.; Crabtree, R. H. Inorg.
Chem. 1996, 36, 2236; (b) Zimmerman, S. C.; Wu, W.;
Zeng, Z. J. Am. Chem. Soc. 1991, 113, 196.
8. Wu, Z.; Moore, J. S. Tetrahedron Lett. 1994, 35, 5539–
5542.
9. 3: H NMR (300 MHz, CDCl3), l 4.53 (s, 16H), 7.26 (t,
14. The absorption spectra measurements for Job’s plot and
the determination of each complex formation constant
were made for the solution after refluxing for 45 min
followed by cooling to 298 K.
15. The AM1 heat of formation is adopted instead of the
experimental one because the convergent experimental
values are difficult to get owing to high complexation
temperature.
1
J=7.6 Hz, 4H), 7.39 (d, J=7.6 Hz, 8H), 7.56 (bs, 4H);
13C NMR (75.4 MHz, CDCl3), l 57.3, 85.0, 86.0, 122.8,
128.4, 131.7, 135.1; IR (KBr, cm−1) 2921, 2852, 2233,
1477, 1355, 1203, 1074, 1035, 887, 794, 682, 557.
1
4: H NMR (300 MHz, CDCl3), l 4.54 (s, 16H), 7.33 (3,