812
G. Chen et al. / Tetrahedron: Asymmetry 13 (2002) 809–813
82.42 (d, J=20.5 Hz), 126.76, 127.07, 127.28, 127.54,
127.82, 128.61, 128.90, 130.28, 130.76, 130.99, 131.61.
31P NMR (CDCl3): l (ppm) 111.60.
mixture was stirred at room temperature for about 20
min. 1,3-Diphenyl-2-allyl acetate (160 mg, 0.6 mmol),
dimethyl malonate (0.21 mL, 1.8 mmol), BSA (0.44
mL, 1.8 mmol) and LiOAc (5.0 mg, 0.072 mmol) were
added sequentially. After stirring the mixture at room
temperature for about 10 h (monitored by TLC), the
mixture was filtered and the filtrate was concentrated
and purified by chromatography (petroleum:ethyl ace-
tate, 8:1) to give the desired product (188 mg).
Compound 1d: Viscous oil, yield: 84%, [h]2D0=+3.0 (c=
3.1, CHCl3). 1H NMR (400 MHz, CDCl3): l (ppm)
2.28 (s, 3H), 3.22 (d, J=13.6 Hz, 1H), 3.52 (d, J=13.2
Hz, 1H), 4.01 (d, J=9.2 Hz, 1H), 5.45 (t, J=8.8 Hz,
1H), 6.84–7.39 (m, 25H). 13C NMR (100 MHz, CDCl3):
l (ppm) 38.10, 59.00, 72.84 (d, J=7.7 Hz), 82.78 (d,
J=20.0 Hz), 126.59, 127.10, 127.61, 127.72, 127.93,
127.99, 128.54, 128.83, 129.96, 130.19, 130.40, 130.64,
130.87. 31P NMR (CDCl3): l (ppm) 110.92.
Acknowledgements
Compound 2: Viscous oil, yield: 94%, [h]2D0=−24.9 (c=
We are grateful for the financial support from the
National Science Foundation of China (29972040), par-
tial support from NSFC project (20102005) and the
Hong Kong Polytechnic University ASD Fund. We
also thank Professor Yoshinori Yamamoto at Tohoku
University in Japan for his generous gift of palladium
complexes.
1
0.86, CHCl3). H NMR (400 MHz, CDCl3): l (ppm)
2.27 (s, 3H), 3.50 (d, J=13.2, 1H), 3.79 (d, J=5.6 Hz,
1H), 4.27 (dd, J=5.2 Hz, 4.0 Hz, 1H), 5.45 (m, 1H),
7.00–7.38 (m, 25H). 13C NMR (100 MHz, CDCl3): l
(ppm) 37.26, 59.70, 73.05 (d, J=5.5 Hz), 81.85 (d,
J=19.5 Hz), 125.25, 125.97, 126.59, 126.85, 127.39,
127.61, 127.78, 127.84, 127.99, 128.10, 128.18, 128.63,
128.88, 129.04, 129.77, 130.16, 130.38, 130.80, 131.02.
31P NMR (CDCl3): l (ppm) 110.62.
References
Compound 3a: Viscous oil, yield: 91%, [h]20=−20.7
1. Tsuji, J. Transition Metal Reagents and Catalysts: Innova-
tions in Organic Synthesis; Wiley: Chichester, 2000; pp.
109–168.
2. (a) Pfaltz, A.; Lautens, M. In Comprehensive Asymmetric
Catalysis; Jacobsen, E. N.; Pfaltz, A.; Yamamoto, H.,
Eds.; Springer: Berlin, 1999; Chapter 24; (b) Trost, B. M.;
Van Vranken, D. L. Chem. Rev. 1996, 96, 395; (c)
Williams, J. M. J. Synlett 1996, 705; (d) Helmchen, G.;
Pfaltz, A. Acc. Chem. Res. 2000, 33, 336.
1
(c=3.8, CHCl3). H NMR (400 MHz, CDCl3): l (ppm)
3.35 (d, J=13.6 Hz, 1H), 3.58 (d, J=13.8 Hz, 1H), 4.01
(d, J=6.8 Hz, 1H), 4.92 (t, J=7.6 Hz, 1H), 6.99–7.32
(m, 25H). 13C NMR (100 MHz, CDCl3): l (ppm) 50.79,
67.61 (d, J=5.9 Hz), 86.16 (d, J=19.5 Hz), 126.61,
127.32, 127.83, 127.92, 127.99, 128.11, 128.80, 128.96,
130.41, 130.47, 130.69, 130.82. 31P NMR (CDCl3): l
(ppm) 110.63.
3. Adams, H.; Anderson, J. C.; Cubbon, R.; James, D. S.;
Mathias, J. P. J. Org. Chem. 1999, 64, 8256 and refer-
ences cited therein.
4. (a) Evans, D. A.; Campos, K. R.; Tedrow, J. S.; Michael,
F. E.; Gagne, M. R. J. Am. Chem. Soc. 2000, 122, 7905;
(b) Nakano, H.; Okuyama, Y.; Yanagida, M.; Hongo, H.
J. Org. Chem. 2001, 66, 620; (c) Mino, T.; Hata, S.;
Ohtaka, K.; Sakamoto, M.; Fujita, T. Tetrahedron Lett.
2001, 42, 4837.
5. (a) Sprinz, J.; Helmchen, G. Tetrahedron Lett. 1993, 34,
1769; (b) Dawson, G. J.; Frost, C. G.; Williams, J. M. J.;
Coote, S. J. Tetrahedron Lett. 1993, 34, 3149; (c) Von
Matt, P.; Pfaltz, A. Angew. Chem., Int. Ed. Engl. 1993,
32, 566; (d) Deng, W. P.; Hou, X. L.; Dai, L. X.; Yu, Y.
H.; Xia, W. Chem. Commun. 2000, 285; (f) Wang, Y.;
Guo, H.; Ding, K. Tetrahedron: Asymmetry 2000, 11,
4153; (g) Anderson, J. C.; Cubbon, R. J.; Harling, J. D.
Tetrahedron: Asymmetry 1999, 10, 2829.
Compound 3b: Viscous oil, yield: 79%, [h]2D0=−37.0
(c=1.94, CHCl3). 1H NMR (400 MHz, CDCl3): l
(ppm) 0.74 (t, J=7.2 Hz, 3H), 1.04 (m, 2H), 1.26 (m,
2H), 2.26 (m, 2H), 3.95 (d, J=6.8 Hz, 1H), 4.92 (dd,
J=6.8 Hz, 2.4 Hz, 1H), 7.09–7.29 (m, 20H). 13C NMR
(100 MHz, CDCl3): l (ppm) 13.82, 20.08, 31.87, 46.93,
68.93 (d, J=6.7 Hz), 86.07 (d, J=19.1 Hz), 127.13,
127.74, 127.85, 127.91, 127.98, 128.08, 128.75, 128.82,
129.07, 130.11, 130.33, 130.60, 130.82. 31P NMR
(CDCl3): l (ppm) 110.63.
Compound 3c: Viscous oil, yield: 89%, [h]2D0=−13.9
1
(c=0.6, CHCl3). H NMR (400 MHz, CDCl3): l (ppm)
1.25 (s, 3H), 1.56 (s, 3H), 2.46 (d, J=6.0 Hz, 1H), 4.42
(dt, J=6.0 Hz, 2.8 Hz, 1H), 4.92 (dd, J=5.6 Hz, 4.0
Hz, 1H), 6.94–7.30 (m, 20H). 13C NMR (100 MHz,
CDCl3): l (ppm) 21.60, 24.03, 51.06, 66.18 (d, J=6.4
Hz), 86.30 (d, J=19.6 Hz), 127.19, 127.80, 127.87,
127.99, 128.05, 128.22, 128.86, 129.10, 129.35, 130.18,
130.40, 130.93, 131.16. 31P NMR (CDCl3): l (ppm)
110.62.
6. (a) Trost, B. M. Acc. Chem. Res. 1996, 29, 355; (b) Hou,
D. R.; Burgess, K. Org. Lett. 1999, 1, 1745.
7. Very recently, chiral phosphinite-oxazoline type ligands
have been applied in allylic alkylation: (a) Yonehara, K.;
Hashizume, T.; Mori, K.; Ohe, K.; Uemura, S. Chem.
Commun. 1999, 415; (b) Yonehara, K.; Hashizume, T.;
Mori, K.; Ohe, K.; Uemura, S. J. Org. Chem. 1999, 64,
9373; (c) Jones, G.; Richards, C. J. Tetrahedron Lett.
2001, 42, 5553; (d) amino-phosphinite ligands derived
from cyclohexanediamine: Vasconcelos, I. C. F.; Rath, N.
P.; Spilling, C. D. Tetrahedron: Asymmetry 1998, 9, 937.
4.5. Typical procedure for asymmetric allylation of 1,3-
diphenyl-2-propenyl acetate with dimethyl malonate
To an oven dried Schlenk flask charged with [Pd(al-
lyl)Cl]2 (3.8 mg, 0.01 mmol) was added a solution of
chiral ligand 3c (0.02 mmol) in toluene (4 mL), the