3930
D. M. Hodgson et al. / Tetrahedron Letters 43 (2002) 3927–3930
9. After commencement of our work the use of a-aryl-a-
Acknowledgements
diazo ketones in Rh(II)-catalysed oxidopyrylium cycload-
ditions was reported: Padwa, A.; Precedo, L.; Semones,
M. A. J. Org. Chem. 1999, 64, 4079–4088.
We thank the EPSRC and GlaxoSmithKline for a
CASE award (to R.G.), Dr B. Odell for NMR experi-
ments and the EPSRC National Mass Spectrometry
Service Centre for mass spectra.
10. Example procedure: 1-diazo-1-phenylhexane-2,5-dione (1)
(35 mg, 0.16 mmol) was dissolved in toluene (3 cm3) and
phenylacetylene (88 mL, 0.80 mmol) added. Rh2(Oac)4
(0.7 mg, 1 mol%) was added and the mixture stirred for
30 min at room temperature. The solvent was evaporated
under reduced pressure. Purification of the residue by
column chromatography [SiO2, 20:1 Et2O:light petroleum
(bp 40–60°C)] gave a white solid, 5-methyl-1,7-diphenyl-
8-oxabicyclo[3.2.1]oct-6-en-2-one 6 (Y, Z=H) (28 mg,
60%): Rf=0.65 [1:1 light petroleum (bp 40–60°C):Et2O];
mp 122–123°C [light petroleum (bp 40–60°C):EtOAc];
IR: wmax (KBr disc)/cm−1=2921 (w), 2854 (w), 1716 (s),
References
1. (a) Gothelf, K. V.; Jørgensen, K. A. Chem. Rev. 1998, 98,
863–909; (b) Karlsson, S.; Ho¨gberg, H.-E. Org. Prep.
Proced. Int. 2001, 33, 105–172; (c) Hodgson, D. M.;
Pierard, F. Y. T. M.; Stupple, P. A. Chem. Soc. Rev.
2001, 30, 50–61; (d) Kitagaki, S.; Hashimoto, S. J. Synth.
Org. Chem. Jpn 2001, 59, 1157–1169; (e) Hodgson, D.
M.; Stupple, P. A.; Forbes, D. C. In Rodd’s Chemistry of
Carbon Compounds, Topical Volume, Asymmetric Cataly-
sis; Sainsbury, M., Ed.; Elsevier: Oxford, 2001; pp. 65–
99; (f) Forbes, D. C.; McMills, M. C. Curr. Org. Chem.
2001, 5, 1091–1105.
1
1448 (m), 1373 (w) and 1187 (m); H NMR (400 MHz;
CDCl3): l=7.42−7.40 (2H, m, 2×aromatic H), 7.31–7.20
(8H, m, 8×aromatic H), 6.54 (1H, s, ꢀCH), 2.92–2.74
(2H, m, COCH2), 2.43 (1H, ddd, J=13.5, 8.5 and 8.5,
COCH2CHH), 2.07 (1H, ddd, J=13.5, 8.5 and 2,
COCH2CHH) and 1.63 (3H, s, Me); 13C NMR (100
MHz; CDCl3): l=203.5 (CꢀO), 144.0 (aromatic C), 135.4
(ꢀCH), 135.0 (aromatic C), 132.1 (Cꢀ), 129.2 (2×aromatic
CH), 128.5 (aromatic CH), 128.3 (2×aromatic CH), 128.1
(2×aromatic CH), 128.0 (aromatic CH), 126.7 (2×aro-
matic CH), 95.1 (PhC-O), 84.5 (MeC-O), 35.0 (CH2),
34.7 (CH2) and 24.4 (Me); anal. calcd for C20H18O2: C,
82.7; H, 6.25%. Found: C, 82.6; H, 6.25; MS (CI, NH3):
m/z (%)=308 (100) [M+NH4+] and 291 (35) [M+H+]
(found: [M+NH+4], 308.1649. C20H22NO2 requires
308.1651).
2. Hodgson, D. M.; Stupple, P. A.; Johnstone, C. Tetra-
hedron Lett. 1997, 38, 6471–6472.
3. (a) Hodgson, D. M.; Stupple, P. A.; Johnstone, C. Chem.
Commun. 1999, 2185–2186; (b) Hodgson, D. M.; Stupple,
P. A.; Pierard, F. Y. T. M.; Labande, A. H.; Johnstone,
C. Chem. Eur. J. 2001, 7, 4465–4476.
4. Kitagaki, S.; Anada, M.; Kataoka, O.; Matsuno, K.;
Umeda, C.; Watanabe, N.; Hashimoto, S. J. Am. Chem.
Soc. 1999, 121, 1417–1418.
5. Donohue, A. C. University of Oxford, unpublished
11. Regiochemistry was confirmed by 2D NOE NMR experi-
ments which showed a strong correlation between the
methyl group and the olefinic H in each case. Aromatic
p–p interactions may contribute to the origin of the
regiochemistry, see: Ibata, T.; Motoyama, T.;
Hamaguchi, M. Bull. Chem. Soc. Jpn. 1976, 49, 2298–
2301.
results.
6. Mateos, A. F.; Coca, G. P.; Alonso, J. J. P.; Gonza´lez, R.
R.; Herna´ndez, C. T. Synlett 1996, 1134–1136.
7. Treatment of the diketone 1 (N2ꢀH2) with base (in our
case DBU) leads to 3-methyl-2-phenylcyclopent-2-enone,
see: Pecunioso, A.; Menicagli, R. J. Org. Chem. 1988, 53,
2614–2617.
12. Hodgson, D. M.; Petroliagi, M. Tetrahedron: Asymmetry
2001, 12, 877–881.
8. Iwasaki, G.; Saeki, S.; Hamana, M. Chem. Lett. 1986,
173–176.