D. J. Wardrop, W. Zhang / Tetrahedron Letters 43 (2002) 5389–5391
5391
Acid-catalyzed (TPHB) addition of methallyl alcohol to
this glycal proceeded with complete diastereoselectivity
to yield the a-glycoside which, upon oxidative cleavage,
was converted to 2-oxopropyl glycoside 17 in good
overall yield. Exposure of this ketone to [(trimethylsi-
lyl)diazomethane]lithium, as before, now furnished
spiroketal glycoside 18 as a single diastereomer in 65%
yield. Ozonolysis of 18 gave the keto aldehyde, which
was converted to KDO a-glycoside 19 through oxida-
tion (NaClO2) and methylation (CH2N2). Treatment of
this glycoside with SmI2 then furnished hemiacetal 20
as a 5:1 mixture of a and b anomers respectively.22
Chem. 2002, 1, 57–60; (b) Dondoni, A.; Marra, A.;
Merino, P. J. Am. Chem. Soc. 1994, 116, 3324–3336; (c)
Crich, D.; Ritchie, J. J. J. Chem. Soc., Chem. Commun.
1988, 985–986 and references cited therein.
6. For recent syntheses of KDO and listings of earlier
approaches, see: (a) Kumaran, G.; Mootoo, D. R. Tetra-
hedron Lett. 2001, 42, 3783–3785; (b) Reiner, M.;
Schmidt, R. R. Tetrahedron: Asymmetry 2000, 11, 319–
335; (c) Mlynarski, J.; Banaszek, A. Org. Lett. 1999, 1,
1709–1711; (d) Burke, S. D.; Sametz, G. M. Org. Lett.
1999, 1, 71–74; (e) Bra¨uer, N.; Kirschning, A.; Schau-
mann, E. Eur. J. Org. Chem. 1998, 68, 1168–1169 and
references cited therein.
7. For syntheses of KO and its derivatives, see: (a) Sarabia,
F.; Lo´pez-Herrera, F. J. Tetrahedron Lett. 2001, 42,
8801–8804; (b) Wimmer, N.; Brade, H.; Kosma, P. Car-
bohydr. Res. 2000, 329, 549–560.
Removal of the isopropylidene groups and saponifica-
tion of the methyl ester now furnished KDO (1), which
was isolated and characterized as the crystalline ammo-
nium salt 21. A comparison of the spectral and physical
properties of this material with those previously
reported indicated a close match.23
8. For selected approaches to ulosonic acid analogs, see: (a)
Sugisaki, C. H.; Ruland, Y.; Le Clezio, I., Baltas, M.
Synlett 2001, 12, 1905–1908 (DAH); (b) Craig, D.; Pen-
nington, M. W.; Warner, P. Tetrahedron 1999, 55, 13495–
13512 (KDO) and references cited therein.
In summary, we report a novel method for the prepara-
tion of ulosonic acids involving the homologation of
glycals through a sequence of glycosylation, alkylidene-
carbene CꢀH insertion and oxidative cleavage. This
strategy was successfully applied to the synthesis of the
natural products DAH (1) and KDO (2). Furthermore,
compounds 12 and 19 are potential masked DAH and
KDO glycosyl donors; 2-oxopropyl glycosides are read-
ily converted, via Baeyer–Villiger oxidation, to the cor-
9. Wardrop, D. J.; Zhang, W.; Fritz, J. Org. Lett. 2002, 4,
489–492.
10. For reviews covering the [1,5]-CꢀH insertion reaction of
alkylidenecarbenes, see: (a) Kirmse, W. Angew. Chem.,
Int. Ed. Engl. 1997, 36, 1164–1170; (b) Taber, D. F. In
Methods of Organic Chemistry, 4th ed.; Helmchen, G.,
Ed.; Georg Thieme: Stuttgart, 1995; Vol. E21, pp. 1127–
1148; (c) Stang, P. J. Angew. Chem., Int. Ed. Engl. 1992,
31, 274–285.
responding
O-acetoxymethyl
glycosides,
which
Mereyala has recently developed as a novel class of
glycosyl donors.24 Further studies aimed at establishing
this possibility and expanding our synthetic approach
to other ulosonic acids are currently underway.
11. Blackburne, I. D.; Fredericks, P. M.; Guthrie, R. D. Aust
J. Chem. 1976, 29, 381.
12. Bolitt, V.; Mioskowski, C.; Lee, S.-G.; Falck, J. R. J.
Org. Chem. 1990, 55, 5812–5813.
13. Ohira, S.; Okai, K.; Moritani, T. J. Chem. Soc. Chem.
Commun. 1992, 721–722.
Acknowledgements
14. For a recent report that documents the facility with
which 2-alkoxy-2,5-dihydrofurans undergo aromatiza-
tion, see: Walker, L. F.; Bourghida, A.; Connolly, S.;
Wills, M. J. Chem. Soc., Perkin Trans. 1 2002, 965–981.
15. Bal, B. S.; Childers, W. E.; Pinnick, H. W. Tetrahedron
1981, 37, 2091–2096.
We thank the National Institutes of Health (GM59157-
01) and the University of Illinois at Chicago for finan-
cial support. W.Z. thanks the University of Illinois for
a University Graduate Fellowship.
16. Hori, H.; Nakajima, T.; Nishida, Y.; Ohrui, H.; Meguro,
H. Tetrahedron Lett. 1988, 29, 6317–6320.
References
17. Molander, G. A.; Hahn, G. J. Org. Chem. 1986, 51,
1135–1138.
18. Auge´, C; Delest, V. Tetrahedron: Asymmetry 1995, 6,
863–866.
19. Kim, C.; Hoang, R.; Theodorakis, E. A. Org. Lett. 1999,
1, 1295–1297.
20. Duan, J. J.-W.; Kishi, Y. Tetrahedron Lett. 1993, 34,
7541–7544.
21. Newton, R. F.; Wadsworth, A. H. J. Chem. Soc., Perkin
Trans. 1 1982, 823–830.
22. Imoto, M.; Kusumoto, S.; Shiba, T. Tetrahedron Lett.
1987, 28, 6235–6238.
23. Sugai, T.; Shen, G.-J.; Ichikawa, Y.; Wong, C.-H. J. Am.
Chem. Soc. 1993, 115, 413–421.
24. Mereyala, H. B.; Gurrala, S. R. Chem. Lett. 1998, 863–
864.
1. Haslam, E. Shikimic Acid Metabolism and Metabolites;
Wiley: New York, 1993.
2. (a) Unger, F. M. Adv. Carbohydr. Chem. Biochem. 1981,
38, 323–388; (b) Anderson, L.; Unger, F. M., Eds. Bacte-
rial Lipopolysaccharides: Structure, Synthesis, and Biolog-
ical Activities; ACS Symposium Series 231; American
Chemical Society: Washington, DC, 1983.
3. (a) Isshiki, Y.; Kawahara, K.; Zahringer, U. Carbohydr.
Res. 1998, 313, 21–27; (b) Vinogradov, E. V.; Mu¨ller-
Loennies, S.; Petersen, B. O.; Meshkov, S.; Thomas-
Oates, J. E.; Holst, O.; Brade, H. Eur. J. Biochem. 1997,
247, 82–90.
4. Baasov, T.; Tkacz, R.; Sheffer-Dee-Noor, S.; Belakhov,
V. Curr. Org. Chem. 2001, 5, 127–138.
5. For syntheses of DAH and listings of earlier approaches,
see: (a) Reiner, M.; Stolz, F.; Schmidt, R. R. Eur. J. Org.