C O M M U N I C A T I O N S
Table 3. Pd-Catalyzed Distannation and Silastannation of
Cyclopropenes
Acknowledgment. The support of the National Science Foun-
dation (CHE-0096889) is gratefully acknowledged.
Supporting Information Available: Experimental details (PDF).
This material is available free of charge via the Internet at http://
pubs.acs.org.
References
(1) See, for example: (a) Corey, E. J.; De, B. J. Am. Chem. Soc. 1984, 106,
2735. (b) Piers, E.; Jean, M.; Marrs, P. S. Tetrahedron Lett. 1987, 28,
5075. (c) Lautens, M.; Delanghe, P. H. M.; Goh, J. B.; Zhang, C. H. J.
Org. Chem. 1995, 60, 4213. (d) Falck, J. R.; Mekonnen, B.; Yu, J.; Lai,
J.-Y. J. Am. Chem. Soc. 1996, 118, 6096. (e) Wakamatsu, H.; Isono, N.;
Mori, M. J. Org. Chem. 1997, 62, 8917.
(2) Itoh, T.; Emoto, S.; Kondo, M. Tetrahedron 1998, 54, 5225.
(3) (a) Schmitz, W. D.; Romo, D. Tetrahedron Lett. 1996, 37, 4857. (b) Peters,
D.; Hornfeldt, A.-B.; Gronowitz, S. J. Heterocycl. Chem. 1991, 28, 1629.
(c) Branca, Q.; Jakob-Rotne, R.; Kettler, R.; Rover, S.; Scalone, M. Chimia
1995, 49, 381.
(4) (a) Warner, P. M.; Herold, R. D.; Chu, I.-S.; Lessman, J. J. Org. Chem.
1988, 53, 942. (b) Pohmakotr, M.; Takampon, A. Tetrahedron Lett. 1996,
37, 4585.
(5) (a) Banwell, M. G.; Cameron, J. M.; Collis, M. P.; Gravatt, G. L. Aust.
J. Chem. 1997, 50, 395. (b) Miura, K.; Oshima, K.; Utimoto, K. Bull.
Chem. Soc. Jpn. 1990, 63, 1665.
(6) (a) Charette, A. B.; Juteau, H.; Lebel, H.; Molinaro, C. J. Am. Chem.
Soc. 1998, 120, 11943. (b) Imai, N.; Sakamoto, K.; Takahashi, H.;
Kobayashi, S. Tetrahedron Lett. 1994, 35, 7045. (c) Delanghe, P. H. M.;
Lautens, M. Tetrahedron Lett. 1994, 35, 9513. (d) Mitchell, T. N.; Kowall,
B. J. Organomet. Chem. 1995, 490, 239. (e) Lee, K.; Kim, S.-I.; Cha, J.
K. J. Org. Chem. 1998, 63, 9135. (f) Tanaka, K.; Minami, K.; Funaki, I.;
Suzuki, H. Tetrahedron Lett. 1990, 31, 2727. (g) Funaki, I.; Bell, R. P.
L.; Thijs, L.; Zwanenburg, B. Tetrahedron 1996, 52, 12253. (h) Scholkopf,
U.; Rieber, N. Angew. Chem., Int. Ed. Engl. 1967, 6, 884. (i) Olofson, R.
A.; Hoskin, D. H.; Lotts, K. D. Tetrahedron Lett. 1978, 19, 1677. (j)
Gadwood, R. C.; Rubino, M. R.; Nagarajan, S. C.; Michel, S. T. J. Org.
Chem. 1985, 50, 3255. (k) Martin, S. F.; Dwyer, M. P. Tetrahedron Lett.
1998, 39, 1521. (l) Pohlmann, T.; de Meijere, A. Org. Lett. 2000, 2, 3877,
and also ref 1e.
low (entries 6-11). In contrast, Pd(PPh3)4 gave both a very good
yield and a very high facial selectivity (entry 12). Optimization of
the reaction conditions showed that this reaction can be carried
out at as low as -78 °C! Still, the reaction was complete in less
than 5 min, and virtually a single facial isomer 3aa was isolated in
86% yield (entry 13). A control experiment with no catalyst
demonstrated that there is a background reaction which proceeds,
probably, via a free radical mechanism producing nonselectively a
1:1 mixture of 3aa and 4aa in moderate yield accompanied with a
notable amount of oligomeric products (entry 14). The best
conditions (Table 1, entry 13) were applied to the hydrostannation
reaction of differently substituted cyclopropenes (eq 2, Table 2).15
The hydrostannation of most of the 3,3-disubstituted cyclopropenes
was governed by steric effects regardless of the tin hydride source;
addition across the cyclopropene double bond proceeded from the
least hindered face (Table 2, entries 1-8).16,17 Surprisingly,
cyclopropenes 1e,f revealed a notable directing effect. Apparently,
a coordination of oxygen to palladium affected the facial selectivity
of hydrostannation favoring the addition from the more sterically
hindered face (entries 9,10).18 Trisubstituted cyclopropene 1g
reacted smoothly to provide cyclopropylstannane 3ga as a single
stereo- and regioisomer (entry 11). Hydrostannation of 1h,i,
however, required the use of a [(π-allyl)PdCl]2/MOP19 catalyst
system to get cyclopropylstannanes 3ha and 3ia with high facial
selectivity and good yields (entries 12,13). Finally, tetrasubstituted
cyclopropene 1j underwent smooth hydrostannation to produce the
corresponding pentasubstituted cyclopropylstannane 3ja in 82%
isolated yield as a single reaction product (entry 14).20
(7) For general reviews on hydro- and silastannation, see: (a) Smith, N. D.;
Mancuso, J.; Lautens, M. Chem. ReV. 2000, 100, 3257. (b) Beletskaya,
I.; Moberg, C. Chem. ReV. 1999, 99, 3435. (c) Suginome, M.; Ito, Y.
Chem. ReV. 2000, 100, 3221.
(8) Baird, M. S. Cyclopropenes: Transformations: Addition Reactions. In
Houben-Weyl; Thieme: Stuttgardt, 1997; E17d/2, p 2794.
(9) (a) For the Pd-catalyzed allylic substitution of cyclopropenylmethyl
acetates with carbon nucleophiles, see: Nuske, H.; Brase, S.; de Meijere,
A. Synlett 2000, 1467. (b) For Pd-catalyzed cross-coupling of cyclopro-
penylzinc and -stannanes with aryl- and vinylhalides, see: Untiedt, S.;
de Meijere, A. Chem. Ber. 1994, 127, 1511.
(10) (a) Mushak, P.; Battiste, M. A. J. Organomet. Chem. 1969, 17, P46. (b)
Fiato, R. A.; Mushak, P.; Battiste, M. A. J. Chem. Soc., Chem. Commun.
1975, 869. (c) Battiste, M. A.; Friedrich, L. E.; Fiato, R. A. Tetrahedron
Lett. 1975, 16, 45. (d) Lukin, K. A.; Zefirov, N. S. Zh. Org. Khim. 1990,
26, 289. (e) Donovan, B. T.; Hughes, R. P.; Spara, P. P.; Rheingold, A.
L. Organometallics 1995, 14, 489.
(11) (a) Weigert, F. J.; Baird, R. L.; Shapley, J. R. J. Am. Chem. Soc. 1970,
92, 6630. (b) Binger, P.; Schroth, G.; McMeeking, J. Angew. Chem., Int.
Ed. Engl. 1974, 13, 465. (c) Binger, P.; McMeeking, J.; Schuchardt, U.
Chem. Ber. 1980, 113, 2372. (d) Binger, P.; Schuchardt, U. Chem. Ber.
1981, 114, 1649. (e) Binger, P.; Buch, H. M.; Benn, R.; Mynott, R. Angew.
Chem., Int. Ed. Engl. 1982, 21, 62.
(12) Rush, S.; Reinmuth, A.; Risse, W. Macromolecules 1997, 30, 7375.
(13) For ring-opening in the Pd-catalyzed hydrostannation of methylenecy-
clopropanes, see: Lautens, M.; Meyer, C.; Lorenz, A. J. Am. Chem. Soc.
1996, 118, 10676.
(14) For hydrostannation of cyclopropenone acetals via free radical mechanism,
see: (a) Nakamura, E.; Machii, D.; Imubushi, T. J. Am. Chem. Soc. 1989,
111, 6849. (b) Yamago, S.; Ejiri, S.; Nakamura, E. Chem. Lett. 1994,
1889.
To further test the scope of this methodology, we examined the
Pd-catalyzed silastannation and distannation reactions (eq 3, Table
3).15 Among the systems tested, Pd(OAc)2 in combination with
Walborsky’s ligand6l gave the best results. The reactions proceeded
with high facial selectivity which was entirely controlled by steric
factors. All tetrasubstituted cyclopropanes 6aa-db were obtained
as sole reaction products in good to very high yields (Table 3).
In conclusion, the first transition metal-catalyzed hydro-, sila-,
and stannastannation of cyclopropenes have been demonstrated.
This method allows for the efficient and straightforward synthesis
of stereodefined multisubstituted building blocks not easily available
by other methods.
(15) For experimental procedures, see Supporting Information.
(16) Syn-stereoselectivity of addition was unambiguously proved by hydrostan-
nation of 1a with Bu3SnD. See Supporting Information for details.
(17) Good scalability was demonstrated by preparation of 11 mmol of 3aa
(80% yield). See Supporting Information for details.
(18) For examples on directing effect in hydrostannation, see: (a) Betzer, J.-
F.; Delaloge, F.; Muller, B.; Pancrazi, A.; Prunet, J. J. Org. Chem. 1997,
62, 7768. (b) Rice, M. B.; Whitehead, S. L.; Horvath, C. M.; Muchnij, J.
A.; Maleczka, R. E., Jr. Synthesis 2001, 1495.
(19) MOP ) (RS)-2-(diphenylphosphino)-2′-methoxy-1,1′-binaphthyl.
(20) Initial experiments using chiral (R)-(+)-MOP ligand with cyclopropene
1b revealed poor asymmetric induction (12% ee). Further investigation
of the chiral version of this reaction is currently under way in our
laboratories.
JA027095K
9
J. AM. CHEM. SOC. VOL. 124, NO. 39, 2002 11567