C O M M U N I C A T I O N S
Scheme 1. Total Synthesis of (-)-azaspirene (1)
(2) Shoji, M.; Yamaguchi, J.; Kakeya, H.; Osada, H.; Hayashi, Y. Angew.
Chem., Int. Ed. 2002, 41, 3192.
(3) Kakeya, H.; Onose, R.; Koshino, H.; Yoshida, A.; Kobayashi, K.;
Kageyama, S.-I.; Osada, H. J. Am. Chem. Soc. 2002, 124, 3496.
(4) Asami, Y.; Kakeya, H.; Onose, R.; Yoshida, A.; Matsuzaki, H.; Osada,
H. Org. Lett. 2002, 4, 2845.
(5) (a) Bloch, P.; Tamm, C.; Bollinger, P.; Petcher, T. J.; Weber, H. P. HelV.
Chim. Acta 1976, 59, 133. (b) Bloch, P.; Tamm, C. HelV. Chim. Acta
1981, 64, 304. (c) Breitenstein, W.; Chexal, K. K.; Mohr, P.; Tamm, C.
HelV. Chim. Acta 1981, 64, 379. (d) Mohr, P.; Tamm, C. Tetrahedron
1981, 37, 201. (e) Dolder, M.; Shao, X.; Tamm, C. HelV. Chim. Acta
1990, 73, 63. (f) Shao, X.; Dolder, M.; Tamm, C. HelV. Chim. Acta 1990,
73, 483. (g) Su, Z.; Tamm, C. HelV. Chim. Acta 1995, 78, 1278. (h) Su,
Z.; Tamm, C. Tetrahedron 1995, 51, 11177. (i) Komagata, D.; Fujita, S.;
Yamashita, N.; Saito, S.; Morino, T. J. Antibiot. 1996, 49, 958.
(6) Ando, O.; Satake, H.; Nakajima, M.; Sato, A.; Nakamura, T.; Kinoshita,
T.; Furuya, K.; Haneishi, T. J. Antibiot. 1991, 44, 382.
16 ) 1:1). When a mixture of 15 and 16 was treated with a catalytic
amount of TsOH‚H2O for 2.8 h, complete formation of the azaspiro-
[4.4]nonenedione bicycle and hydration of the benzylidene group
occurred concurrently to afford 17 as a single isomer19 in 91% yield.
Deprotection of the TIPS group with NH4F in MeOH afforded
azaspirene (1) in 35% yield. The order of the last two reactions is
very important: When the benzylidene derivative 1620 was first
deprotected with NH4F, and then hydrated with TsOH‚H2O, racemic
azaspirene was formed, probably because of a retro-aldol reaction.
During the sequence of hydration and deprotection, the presence
of an hydroxy group at C8 of the azaspiro[4.4]nonenedione seems
to prevent the recemization. Synthetic azaspirene exhibited proper-
ties identical to those of the natural product (1H NMR, 13C NMR,
IR, mp, Rf value, and chiral HPLC analysis). Comparison of the
optical rotation (synthetic 1; [R]27D -207 (c ) 0.13, MeOH), natural
(7) Sharpless, K. B.; Amberg, W.; Bennani, Y. L.; Crispino, G. A.; Hartung,
J.; Jeong, K.-S.; Kwong, H.-L.; Morikawa, K.; Wang, Z.-M.; Xu, D.;
Zhang, X.-L. J. Org. Chem. 1992, 57, 2768.
(8) For the determination of ee, see the Supporting Information.
(9) Allen, C. F. H.; Endens, C. O., Jr. Organic Syntheses; Wiley & Sons:
New York, 1973; Collect. Vol. 3, p 731.
1[4]; [R]25 -204.4 (c ) 0.158, MeOH), established the absolute
D
stereochemistry of the natural product to be (5S,8R,9R).
In summary, the first asymmetric total synthesis of (-)-
azaspirene (1) has been achieved, and its absolute stereochemistry
has been determined. There are several noteworthy features to this
total synthesis: The MgBr2‚OEt2-mediated, diastereoselective Mu-
kaiyama aldol reaction of 5 and 7, the NaH-promoted intramolecular
cyclization of the alkynylamide 10 to form selectively the Z-
benzylidene γ-lactam 11, the aldol reaction of 13 containing
functionalized γ-lactam moiety without protection of tert-alcohol
and amide functionalities, and the importance of the order of the
last two reactions.
(10) Ketene silyl acetal 7 was obtained as a single isomer, the geometry of
which has not been determined.
(11) In the elegant total syntheses of zaragozic acid and cinatrins by Evans et
al., Ti(O-i-Pr)Cl3 is an effective Lewis acid in Mukaiyama aldol reaction
of a silylketene acetal derived from di-tert-butyl-(2S,3S)-1,4-dioxaspiro-
[4.4]nonane-2,3-dicarboxylate. Evans, D. A.; Barrow, J. C.; Leighton, J.
L.; Robichaud, A. J.; Sefkow, M. J. Am. Chem. Soc. 1994, 116, 12111;
Evans, D. A.; Trotter, B. W.; Barrow, J. C. Tetrahedron 1997, 53, 8779.
(12) For recent elegant use of MgBr2‚OEt2 as an effective Lewis acid, see:
(a) Fujisawa, H.; Sasaki, Y.; Mukaiyama, T. Chem. Lett. 2001, 190. (b)
Evans, D. A.; Tedrow, J. S.; Shaw, J. T.; Downey, C. W. J. Am. Chem.
Soc. 2002, 124, 392. (c) Sibi, M. P.; Sausker, J. B. J. Am. Chem. Soc.
2002, 124, 984.
(13) Crystal data: monoclinic, space group P21, a ) 11.404(3) Å, b ) 7.941-
(2) Å, c ) 12.843(3) Å, â ) 105.643(5)°, V ) 1120.0(5) Å3, Z ) 2, R1
) 0.0698 for I > 2.0σ(I), wR2 ) 0.1713 for all data (5002 reflections).
The details are supplied as Supporting Information (Figure S1).
(14) The geometry of the olefins was determined by NOESY experiment.
(15) (a) Koseki, Y.; Kusano, S.; Ichi, D.; Yoshida, K.; Nagasaka, T. Tetrahedron
2000, 56, 8855. (b) Cid, M. M.; Dominguez, D. D.; Castedo, L.; Vazquez-
Lopez, E. M. Tetrahedron 1999, 55, 5599.
(16) (a) Dess, D. B.; Martin, J. C. J. Org. Chem. 1983, 48, 4155. (b) Dess, D.
B.; Martin, J. C. J. Am. Chem. Soc. 1991, 113, 7277. (c) Ireland, R. E.;
Liu, L. J. Org. Chem. 1993, 58, 2899.
(17) Meyer, S. D.; Schreiber, S. L. J. Org. Chem. 1994, 59, 7549.
(18) 1H and 13C NMR analyses show that 15 exists in the 1,3-diketo form
rather than the keto-enol form.
(19) The stereochemistry at C8 was confirmed by NOESY and difference NOE
experiments, see Supporting Information.
Acknowledgment. This work was partially supported by the
Sumitomo Foundation.
Supporting Information Available: Detailed experimental pro-
1
cedures, full characterization, copies of H, 13C NMR, and IR spectra
of all new compounds (PDF). This material is available free of charge
References
(20) 16 was obtained in 94% yield from 15 by repeated treatment with thin-
(1) (a) Folkman, J. J. Natl. Cancer Inst. 1990, 82, 4. (b) Risau, W. Nature
1997, 386, 671. (c) Klagsbrum, M.; Moses, M. A. Chem. Biol. 1999, 6,
R217. (d) Gasparini, G. Drugs 1998, 58, 17.
layer chromatography (TLC).
JA0276826
9
J. AM. CHEM. SOC. VOL. 124, NO. 41, 2002 12079