10.1002/adsc.201701377
Advanced Synthesis & Catalysis
References
[9] a) Y. Kato, M. Furutachi, Z. Chen, H. Mitsunuma, S.
Matsunaga, M. Shibasaki, J. Am. Chem. Soc. 2009, 131,
9168-9169; b) Y.-Y. Han, Z. Wu, W.-B. Chen, X.-L.
Du, X.-M. Zhang, W.-C. Yuan, Org. Lett. 2011, 13,
5064-5067; c) C. Fallan, H. W. Lam, Chem. Eur. J.
2012, 18, 11214-11218; d) A. J. Simpson, H. W. Lam,
Org. Lett. 2013, 15, 2586-2589; e) A. Awata, M. Wasai,
H. Masu, S. Kado, T. Arai, Chem. Eur. J. 2014, 20,
2470-2477; f) D. Yang, L. Wang, D. Li, F. Han, D.
Zhao, R. Wang, Chem. Eur. J. 2015, 21, 1458-1462; g)
M. Mechler, R. Peters, Angew. Chem. 2015, 127,
10442-10446; Angew. Chem. Int. Ed. 2015, 54, 10303-
10307; h) X. Hou, H. Ma, Z. Zhang, L. Xie, Z. Qin, B.
Fu, Chem. Commun, 2016, 52, 1470-1473.
[1] a) N. Ono, The Nitro Group in Organic Synthesis;
Wiley-VCH: New York, 2001; b) C. Czekelius, E. M.
Carreira, Angew. Chem. 2005, 117, 618-621; Angew.
Chem. Int. Ed. 2005, 44, 612-615.
[2] For reviews, see: a) A. G. M. Barrett, Chem. Soc. Rev.
1991, 20, 95-127; b) O. M. Berner, L. Tedeschi, D.
Enders, Eur. J. Org. Chem. 2002, 1877-1894.
[3] For reviews, see: a) S. Sulzer-Mossé, A. Alexakis,
Chem. Commun. 2007, 3123-3135; b) A. G. Doyle, E.
N. Jacobsen, Chem. Rev. 2007, 107, 5713-5743; For
selected examples: c) T. Ishii, S. Fujioka, Y. Sekiguchi,
H. Kotsuki, J. Am. Chem. Soc. 2004, 126, 9558-9559;
d) H. Li, Y. Wang, L. Tang, L. Deng, J. Am. Chem. Soc.
2004, 126, 9906-9907; e) Y. Hayashi, H. Gotoh, T.
Hayashi, M. Shoji, Angew. Chem. 2005, 117, 4284-
4297; Angew. Chem. Int. Ed. 2005, 44, 4212-4215; f)
S. Luo, X. Mi, L. Zhang, S. Liu, H. Xu, J.-P. Cheng,
Angew. Chem. 2006, 118, 3165-3169; Angew. Chem.
Int. Ed. 2006, 45, 3093-3097; g) H. Huang, E. N.
Jacobsen, J. Am. Chem. Soc. 2006, 128, 7170-7171; h)
S. Zhu, S. Yu, D. Ma, Angew. Chem. 2008, 120, 555-
558; Angew. Chem. Int. Ed. 2008, 47, 545-548; i) Z.-L.
Zheng, B. L. Perkins, B, Ni, J. Am. Chem. Soc. 2010,
132, 50-51; j) G. Sahoo, H. Rahaman, Á. Madarász, I.
Pápai, M. Melaro, A. Walkonen, P. Pihko, Angew.
Chem. 2012, 124, 13321-13325; Angew. Chem. Int. Ed.
2012, 51, 13144-13148.
[10] For reports pertinent to the chiral-at-metal complexes
from our research group, see: a) J. Gong, K. Li, S.
Qurban, Q. Kang, Chin. J. Chem. 2016, 34, 1225-1235;
b) G.-J. Sun, J. Gong, Q. Kang, J. Org. Chem. 2017, 82,
796-803; c) T. Deng, G.-K. Thota, Y. Li, Q. Kang, Org.
Chem. Front. 2017, 4, 573-577; d) S.-W. Li, J. Gong,
Q. Kang, Org. Lett. 2017, 19, 1350-1353; e) K. Li, Q.
Wan, Q. Kang, Org. Lett. 2017, 19, 3299-3302.
[11] For recent reviews on chiral-at-metal complexes in
catalysis, see: a) L. Zhang, E. Meggers, Acc. Chem. Res.
2017, 50, 320-330. b) L. Zhang, E. Meggers, Chem.
Asian J, 2017, 12, 2335-2342. c) E. Meggers, Angew.
Chem. 2017, 129, 5760-5768; Angew. Chem. Int. Ed.
2017, 56, 5668-5675.
[12] For selected examples of chiral-at-metal rhodium
complexes as Lewis acids in catalysis, see: a) H. Huo,
X. Shen, C. Wang, L. Zhang, P. Röse, L.-A. Chen, K.
Harms, M. Marsch, G. Hilt, E. Meggers, Nature 2014,
515, 100-103; b) C. Wang, L.-A. Chen, H. Huo, X.
Shen, K. Harms, L. Gong, E. Meggers, Chem. Sci. 2015,
6, 1094-1100; c) H. Huo, C. Wang, K. Harms, E.
Meggers, J. Am. Chem. Soc. 2015, 137, 9551-9554; d)
Y. Tan, W. Yuan, L. Gong, E. Meggers, Angew. Chem.
2015, 44, 13237-13240; Angew. Chem. Int. Ed. 2015,
54, 13045-13048; e) X. Huang, R. D. Webster, K.
Harms, E. Meggers, J. Am. Chem. Soc. 2016, 138,
12636-12642; f) L. Feng, X. Dai, E. Meggers, L. Gong,
Chem. Asian. J. 2017, 12, 963-967; g) X. Huang, T. R.
Quinn, K. Harms, R. D. Webster, L. Zhang, O. Wiest,
E. Meggers, J. Am. Chem. Soc. 2017, 139, 9120-9123;
h) H. Lin, Z. Zhou, J. Cai, B. Han, L. Gong, E. Meggers,
J. Org. Chem. 2017, 82, 6457-6467; i) B. Tutkowski,
E. Meggers, O. Wiest, J. Am. Chem. Soc. 2017, 139,
8062-8065; j) J. Ma, A. R. Rosales, X. Huang, K.
Harms, R. Riedel, O. Wiest, E. Meggers, J. Am. Chem.
Soc. 2017, DOI: 10.1021/jacs.7b09152; k) Z. Zhou, Y.
Li, B. Han, L. Gong, E. Meggers, Chem. Sci. 2017,
DOI: 10.1039/c7sc02031g.
[4] For a review, see: H. Pellissier, Adv. Synth. Catal. 2015,
357, 2745-2780.
[5] B. List, P. Pojarliev, H. J. Martin, Org. Lett. 2001, 3,
2423-2425.
[6] K. Sakthivel, W. Notz, T. Bui, C. F. Barbas, III, J. Am.
Chem. Soc. 2001, 123, 5260-5267.
[7] For 1,2-dicarbonyl nucleophiles, see: a) A. Nakamura,
S. Lectard, D. Hashizume, Y. Hamashima, M. Sodeoka,
J. Am. Chem. Soc. 2010, 132, 4036-4037; b) Y.-J. Xu,
S. Matsunaga, M. Shibasaki, Org. Lett. 2010, 12, 3246-
3249; c) D. Shi, Y. Xie, H. Zhou, C. Xia, H. Huang,
Angew. Chem. 2012, 124, 1274-1277; Angew. Chem.
Int. Ed. 2012, 51, 1248-1251.
[8] For 1,3-dicarbonyl nucleophiles, see: a) D. A. Evans, S.
Mito, D. Seidel, J. Am. Chem. Soc. 2007, 129, 115583-
11592; b) T. Tsubogo, Y. Yamashita, S. Kobayashi,
Angew. Chem. Int. Ed. 2009, 48, 9117-9120; c) H.
Mitsunuma, S. Matsunaga, Chem. Commun. 2011, 47,
469-471; d) T. Tsubogo, Y. Yamashita, S. Kobayashi,
Chem. Eur. J. 2012, 18, 13624-13628; e) X. Li, F. Peng,
M. Zhou, M. Mo, R. Zhao, Z. Shao, Chem. Commun.
2014, 50, 1745-1747; f) D. Bissessar, T. Achard, S.
Bellemin-Laponnaz, Adv. Synth. Catal. 2016, 358,
1982-1988; g) J. Feng, X. Yuan, W. Luo, L. Lin, X. Liu,
X. Feng, Chem. Eur. J. 2016, 22, 15650-15653; h) Z.
Yu, X. Liu, L. Zhou, L. Lin, X. Feng, Angew. Chem.
[13] The solubility of α-substituted imidazole-modified
ketones is relatively poor. Thus, mixed solvents
(tBuOH/DCE, 2:1) were employed for investigating the
generality of α-substituted imidazole-modified ketones.
2009, 121, 5297-5300; Angew. Chem. Int. Ed. 2009, 48, [14] H. Li, Y. Wang, L. Tang, F. Wu, X. Liu, C. Guo, B. M.
5195-5198; i) Y. Xiong, Y. Wen, F. Wang, B. Gao, X.
Liu, X. Huang, X. Feng, Adv. Synth. Catal. 2007, 349,
2156-2166.
Foxman, L. Deng, Angew. Chem. 2005, 117, 107-110;
Angew. Chem. Int. Ed. 2005, 44, 105-108; b) T. Bui, S.
Syed, C. F. Barbas III, J. Am. Chem. Soc. 2009, 131,
4
This article is protected by copyright. All rights reserved.