Table 4 Crystal data and structure refinement
lographic data in CIF or other electronic format.
3d
3g
Formula
FW
C49.5H49Au2ClO4.5P2
1207.21
C46H38Au2O4P2
1110.64
Acknowledgements
We thank the NSERC (Canada) for financial support and for a
scholarship to W. J. H., and Dr M. C. Jennings for the X-ray
data collection for complex 3g. R. J. P. thanks the Government
of Canada for a Canada Research Chair.
T /K
λ/Å
Crystal system
Space group
a/Å
223(2)
0.71073
Monoclinic
P21/c
10.6544(6)
27.827(1)
16.5665(9)
98.377(1)
4859.3(5), 4
1.65
200(2)
0.71073
Monoclinic
P21/n
14.7711(5)
15.2895(5)
18.3486(8)
107.100(2)
3960.7(3), 4
1.86
b/Å
c/Å
β/Њ
References
Volume/Å3, Z
D(calc)/Mg mϪ3
Absorption coefficient/
mmϪ1
1 (a) S. Leininger and P. J. Stang, Chem. Rev., 2000, 100, 853;
(b) P. J. Stang and B. Olenyuk, Acc. Chem. Res., 1997, 30, 502;
(c) M. Fujita and K. Ogura, Coord. Chem. Rev., 1996, 148, 249.
2 Comprehensive Supramolecular Chemistry, J. L. Atwood, J. E. D.
Davies, D. D. MacNicol, F. Vögtle and K. S. Suslick, eds., Pergamon
Press, Oxford, 1996.
6.194
7.524
F(000)
2348
25358/8550
2136
35062/9050
Reflections/
independent reflections
Absorption correction
R1/wR2 [I > 2σ(I )]
3 M. H. Keefe, K. D. Benkstein and J. T. Hupp, Coord. Chem. Rev.,
2000, 205, 201.
Integration
0.1061/0.2817
SADABS
0.0416/0.0993
4 (a) V. W. W. Yam, K. K. W. Lo and M. C. Wong, J. Organomet.
Chem., 1999, 578, 3; (b) M. J. Irwin, J. J. Vittal and R. J. Puddephatt,
Organometallics, 1997, 16, 3541; (c) C. M. Che, H. K. Yip, W. C. Lo
and S. M. Peng, Polyhedron, 1994, 13, 887; (d ) C. M. Che,
H. Y. Chao, V. M. Miskowski, Y. Li and K. K. Cheung, J. Am.
Chem. Soc., 2001, 123, 4985.
5 (a) V. W. W. Yam, C. K. Li and C. L. Chan, Angew. Chem., Int. Ed.,
1998, 37, 2856; (b) B. C. Tzeng, W. C. Lo, C. M. Che and S. M. Peng,
Chem. Commun., 1996, 181; (c) B. C. Tzeng, K. K. Cheung and
C. M. Che, Chem. Commun., 1996, 1681; (d ) A. Burini, R. Bravi,
J. P. Fackler Jr., R. Galassi, T. A. Grant, M. A. Omary, B. R.
Pietroni and R. J. Staples, Inorg. Chem., 2000, 39, 3158; (e) W. H.
Chan, T. C. W. Mak and C. M. Che, J. Chem. Soc., Dalton Trans.,
1998, 2275; ( f ) J. C. Vickery, M. M. Olmstead, E. Y. Fung and
A. L. Balch, Angew. Chem., Int. Ed. Engl., 1997, 36, 1179; (g) E. Y.
Fung, M. M. Olmstead, J. C. Vickery and A. L. Balch, Coord. Chem.
Rev., 1998, 171, 151; (h) R. H. Uang, C. K. Chan, S. M. Peng and
C. M. Che, J. Chem. Soc., Chem. Commun., 1994, 2561.
7.15 [t, 3J(HH) = 8.0 Hz, 2H, H–C5Ar], 6.98 [t, J(HP) = 18.1 Hz,
2H, dppee], 6.74 [s, 2H, H–C2Ar], 6.53 [d, 3J(HH) = 7.5 Hz, 2H,
H–C4 6Ar], 4.78 [s, 4H; CH2CC], 4.31 [s, 4H; OCH2CH2O];
or
31
δ( P) = 39.05 [s]. IR (Nujol): ν(C᎐C) 2132 cmϪ1. Anal. Calc. for
᎐
᎐
C46H38O4P2Au2: C, 49.7; H, 3.4. Found: C, 49.5; H, 3.3%.
᎐
[1,2-C H (O-3-C H OCH C᎐CAu) (ꢀ-dppa)], 3h. Yield 35%.
᎐
2
4
6
4
2
2
NMR (CD2Cl2): δ(1H) 7.4–7.7 [m, 22H; Ph and o-HAr], 7.18
3
[t, J(HH) = 8 Hz, 2H, H–C5Ar], 6.79 [s, 2H, H–C2Ar], 6.55
[d, 3J(HH) = 8 Hz, 2H, H–C4 or 6Ar], 4.81 [s, 4H, CH2CC], 4.33
31
᎐
[s, 4H, OCH CH O]; δ( P) 17.50 [s]. IR (Nujol): ν(C᎐C–Au)
᎐
2
2
2129, ν(C᎐CP) 2065 cmϪ1. Anal. Calc. for C46H36O4P2Au2: C,
᎐
᎐
49.8; H, 3.3. Found: C, 49.6; H, 3.1%.
6 (a) A. Grohmann and H. Schmidbaur, in Comprehensive
Organometallics II, E. W. Abel, F. G. A. Stone and G. Wilkinson,
eds., Elsevier, Oxford, 1995, vol. 3, pp. 1–56; (b) R. J. Puddephatt, in
Comprehensive Coordination Chemistry, G. Wilkinson, R. D. Gillard
and J. A. McCleverty, eds., Pergamon Press, Oxford, 1987, vol. 5,
pp. 861–923; (c) H. Schmidbaur, ed., Gold: Progress in Chemistry,
Biochemistry and Technology, Wiley: Chichester, 1999.
7 (a) W. J. Hunks, M. A. MacDonald, M. C. Jennings and R. J.
Puddephatt, Organometallics, 2000, 19, 5063; (b) M. J. Irwin,
L. M. Rendina, J. J. Vittal and R. J. Puddephatt, Chem. Commun.,
1996, 1281; (c) M. A. MacDonald and G. P. A. Yap, Organo-
metallics, 2000, 19, 2194; (d ) C. P. McArdle, M. J. Irwin, M. C.
Jennings and R. J. Puddephatt, Angew. Chem., Int. Ed., 1999, 38,
3376; (e) C. P. McArdle, J. J. Vittal and R. J. Puddephatt, Angew.
Chem., Int. Ed., 2000, 39, 3819; ( f ) R. J. Puddephatt, Chem.
Commun., 1998, 1055; (g) C. P. McArdle, M. C. Jennings, J. J. Vittal
and R. J. Puddephatt, Chem. Eur. J., 2001, 7, 3573; (h) R. J.
Puddephatt, Coord. Chem. Rev., 2001, 216–217, 313.
X-Ray data collection and structure determination
Crystals of 3g were grown by slow diffusion of ether into a
solution in dichloromethane at 4 ЊC. A tiny, colourless plate
was mounted on a glass fibre. Data were collected at 200 K
using a Nonius Kappa-CCD diffractometer using COLLECT
(Nonius, 1998) software. The unit cell parameters were
calculated and refined from the full data set. Crystal cell refine-
ment and data reduction was carried out using the Nonius
DENZO package. The data were scaled using SCALEPACK
(Nonius, 1998) and no other absorption corrections were
applied. The crystal data and refinement parameters are listed
in Table 4.
The SHELXTL 5.1 program package was used to solve the
structure by Patterson methods and refinement was by full-
matrix least squares on F 2.14 All non-hydrogen atoms were
refined with anisotropic thermal parameters. The hydrogen
atoms were calculated geometrically and were riding on their
respective carbon atoms. The largest residual electron density
peak (2.383 e ÅϪ3) was associated with one of the gold atoms.
The data for 3dؒ0.5CH2Cl2ؒ0.5H2O were collected at Ϫ50 ЊC
using a Siemens SMART 1K CCD diffractometer. The
structure was solved using direct methods, completed by sub-
sequent Fourier syntheses, and refined by full-matrix least-
squares on F 2 using SHELXTL 5.10.14 All atoms were refined
anisotropically, except hydrogen atoms, which were treated as
idealized contributions. Empirical absorption corrections were
applied using SADABS.15 No special constraints or restraints
were applied in solving structure 3d. The molecule was posi-
tioned on the inversion center in the monoclinic space group
P21/c, and showed possible disorder, although this could not be
refined successfully. There are large residuals, and the structure
determination was only partly successful, but the connectivity is
established.
8 (a) J. G. Hansen, N. Feeder, D. G. Hamilton, M. J. Gunter, J. Becher
and J. K. M. Sanders, Org. Lett., 2000, 2, 449; (b) G. R. Desiraju,
Acc. Chem. Res., 1996, 29, 441; (c) M. J. Calhorda, Chem. Commun.,
2000, 801.
9 R. J. Cross and M. F. Davidson, J. Chem. Soc., Dalton Trans., 1986,
411.
10 D. M. P. Mingos, J. Yau, S. Menzer and D. J. Williams,
Angew. Chem., Int. Ed. Engl., 1995, 34, 1894.
11 (a) P. Pyykkö, Chem. Rev., 1997, 97, 597; (b) S. S. Pathaneni and
G. R. Desiraju, J. Chem. Soc., Dalton Trans., 1993, 319; (c) P.
Pyykkö, J. Li and N. Runeberg, Chem. Phys. Lett., 1994, 218, 133;
(d ) J. Li and P. Pyykkö, Chem. Phys. Lett., 1992, 197, 586.
12 (a) M. J. Irwin, J. J. Vittal and R. J. Puddephatt, Organometallics,
1997, 16, 3541; (b) W. E. van Zyl, J. M. Lopez-de-Luzuriaga and
J. P. Fackler Jr., J. Mol. Struct., 2000, 516, 99.
13 M. C. Brandys, M. C. Jennings and R. J. Puddephatt, J. Chem. Soc.,
Dalton Trans., 2000, 4601.
14 G. M. Sheldrick, SHELXTL 5.10 for Windows: Structure
Determination Software Programs, Bruker Analytical X-Ray
Systems, Inc., Madison, WI, 1997.
15 G. M. Sheldrick, SADABS: Program for Empirical Absorption
Correction of Area Detector Data, University of Göttingen,
Germany, 1998.
CCDC reference numbers 181890 (3g) and 181891 (3d).
J. Chem. Soc., Dalton Trans., 2002, 2885–2889
2889