TABLE 1. Screening of Clicked Catalysts
entry
catalyst (mol %)
time (h)
yielda (%)
drb
eec (%)
entry
catalyst (mol %)
time (h)
yielda (%)
drb
eec (%)
Initial Catalyst Discovery
12
13
CP-10
CP-11
18
18
74
92
9:1
19:1
33
40
1d
2
L-proline
L-prolinol
CP-1
24
24
24
18
94
23
34
99
>20:1
20:1
20:1
23
78
80
92
3
Clicked Library II
4
CP-2
49:1
14
15
16
17
18
19
20
21
22
CP-12
18
20
18
18
18
18
18
18
24
99
56
97
95
99
99
90
87
90
49:1
49:1
19:1
49:1
49:1
49:1
49:1
49:1
49:1
91
91
90
90
89
92
90
91
87
Clicked Library I
CP-13
CP-14
CP-15
CP-16
CP-17
CP-18
CP-19
CP-20
5
6
7
8
9
CP-3
CP-4
CP-5
CP-6
CP-7
CP-8
CP-9
24
36
70
24
18
18
24
25
7
10:1
n.d.e
n.d.
17:1
24:1
19:1
49:1
87
n.d.
n.d.
79
93
92
trace
44
95
51
59
10
11
94
1
a Isolated yields. b Syn/anti as determined by H NMR. c Determined by HPLC (chiral pak AD-H column). d 15 mol % of L-proline was employed, see
ref 14a. e Abbreviation n.d.) not determined.
Previously, L-proline has been shown to be a viable catalyst
for Michael addition of ketones to nitroolefins but with low
enantioselectivity (Table 1, entry 1).14 We found that simple
proline derivatives such as L-prolinol and azido-pyrrolidine CP-1
were able to promote the same reaction with improved enan-
tioselectivity, albeit in low yields (Table 1, entries 2 and 3).
On the basis of these observations, we thought to further
improve the catalyst by click chemistry based on the clicking
hypothesis (Scheme 1). The pyrrolidine-triazole conjugate
CP-2 was easily accessed by reaction of azido-pyrrolidine CP-1
or Boc-protected CP-1 with phenylacetylene in high yields
(Scheme 2).
SCHEME 2. Synthesis of CP-2 by Click Reaction
49:1, 92% ee). The Michael adduct obtained has the (1′S,2R)
absolute stereochemistry by optical comparison with published
results.12,13 Therefore, the stereoselectivity can be explained by
the transition state shown in Scheme 1, which is consistent with
our initial hypothesis (Scheme 1). Next, libraries of the clicked
pyrrolidines were successively constructed using the clicking
protocol (see Supporting Information for details)15 from the
corresponding azido cores in order to identify more potent
catalysts and to better understand the structure-activity relation-
ships (Figure 1).
First, we explored clicked catalysts with different chiral
skeletons (Clicked Library I). As shown in Table 1, the
performance of clicked catalysts vary dramatically with different
skeletons where several features are evident: (1) The thiozo-
lidine-type catalysts (CP-3-5) are ineffective in catalyzing the
reaction (Table 1, entries 5-7). The reason for the failure of
this type of catalysts is unclear presently, but warrants further
theoretical study. (2) 4-cis-Substituted pyrrolidines (CP-6-9,
Table 1, entries 8-11) showed better enantioselectivity than
the 4-trans-substituted catalysts (CP-10 and CP-11, Table 1,
entries 12 and 13). The clicked catalyst CP-10 with a bulky
4-trans-BnO group gave lower activity and enantioselectivity
than its analogue CP-11 (bearing a less bulky 4-OH group),
suggesting the space-shielding effect is working in the reaction.
To our delight, CP-2 demonstrated high activity (18 h, 99%
yield) and high stereoselectivity (Table 1, entry 4, syn/anti )
(11) For examples, see: (a) Betancort, J. M.; Barbas, C. F., III. Org.
Lett. 2001, 3, 3737-3740. (b) Mase, N.; Thayumanavan, R.; Tanaka, F.;
Barbas, C. F., III. Org. Lett. 2004, 6, 2527. (c) Cobb, A. J. A.; Longbottom,
D. A.; Shaw, D. M.; Ley, S. V. Chem. Commun. 2004, 1808-1809. (d)
Cobb, A. J. A.; Shaw, D. M.; Longbottom, D. A.; Gold, J. B.; Ley, S. V.
Org. Biomol. Chem. 2005, 3, 84-96. (e) Alexakis, A.; Andrey, O. Org.
Lett. 2002, 4, 3611-3614. (f) Andrey, O.; Alexakis, A.; Bernardinelli, G.
Org. Lett. 2003, 5, 2559-2561. (g) Mosse, S.; Laars, M.; Kriis, K.; Kanger,
T.; Alexakis, A. Org. Lett. 2006, 8, 2559-2562. (h) Wang, W.; Wang, J.;
Li, H. Angew. Chem., Int. Ed. 2005, 44, 1369. (i) Wang, J.; Li, H.; Lou,
B.; Zu, L.; Guo, H.; Wang, W. Chem.sEur. J. 2006, 12, 4321-4332. (j)
Zu, L.; Wang, J.; Li, H.; Wang, W. Org. Lett. 2006, 8, 3077-3079. (k)
Cao, C.-L.; Ye, M.-C.; Sun, X.-L.; Tang, Y. Org. Lett. 2006, 8, 2901-
2904. (l) Xu, Y.; Cordova, A. Chem. Commun. 2006, 1451-1453. (m) Xu,
Y.; Zou, W.; Sunden, H.; Ibrahem, I.; Cordova, A. AdV. Synth. Catal. 2006,
348, 418-424. (n) Tsogoeva, S. B.; Wei, S. Chem. Commun. 2006, 1451-
1453. (o) Huang, H.; Jacobsen, E. N. J. Am. Chem. Soc. 2006, 128, 7170-
7171. (p) Zhu, M.-L.; Cun, L.-F.; Mi, A.-Q.; Jiang, Y.-Z.; Gong, L.-Z.
Tetrahedron: Asymmetry 2006, 17, 491-493. (q) Mase, N.; Watanabe, K.;
Yoda, H.; Takabe, K.; Tanaka, F.; Barbas, C. F., III. J. Am. Chem. Soc.
2006, 128, 4966-4967. (r) Terakado, D.; Takano, M.; Oriyama, T. Chem.
Lett. 2005, 34, 962-963. (s) Enders, D.; Huttl, M. R. M.; Grondal, C.;
Raabe, G. Nature 2006, 441, 861-863.
(12) (a) Ishii, T.; Fujioka, S.; Sekiguchi, Y.; Kotsuki, H. J. Am. Chem.
Soc. 2004, 126, 9558-9559. (b) Hayashi, Y.; Gotoh, H.; Hayashi, T.; Shoji,
M. Angew. Chem., Int. Ed. 2005, 44, 4212-4215. (c) Andrey, O.; Alexakis,
A.; Tomassini, A.; Bernardinelli, G. AdV. Synth. Catal. 2004, 346, 1147-
1168. (d) Mitchell, C. E. T.; Cobb, A. J. A.; Ley, S. V. Synlett 2005, 611-
614. (e) Betancort, J. M.; Sakthivel, K.; Thayumanava, R.; Tanaka, F.;
Barbas, C. F., III. Synthesis 2004, 1509-1521.
(13) (a) Luo, S. Z.; Mi, X. L.; Zhang, L.; Liu, S.; Xu, H.; Cheng, J.-P.
Angew. Chem., Int. Ed. 2006, 45, 3093-3097. (b) Luo, S. Z.; Mi, X. L.;
Liu, S.; Xu, H.; Cheng, J.-P. Chem. Commun. 2006, 3687.
(15) For “click” reaction, that is, 1,3-dipolar cycloaddition between azides
and alkynes with 1,4-regioselectivity, see ref 7b and (a) Tornoe, C. W.;
Christensen, C.; Meldal, M. J. Org. Chem. 2002, 67, 3057. For 1,5-
regioselectivity, see (b) Zhang, L.; Chen, X.; Xue, P.; Sun, H. H. Y.;
Williams, I. D.; Sharpless, K. B.; Fokin, V. V.; Jia, G. J. Am. Chem. Soc.
2005, 127, 15998-15999. (c) Krasinski, A.; Fokin, V. V.; Sharpless, K. B.
Org. Lett. 2004, 6, 1237.
(14) (a) List, B.; Pojarliev, P.; Martin, H. J. Org. Lett. 2001, 3, 2423-
2425. (b) Enders, D.; Seki, A. Synlett 2002, 26.
J. Org. Chem, Vol. 71, No. 24, 2006 9245