Page 5 of 6
ACS Medicinal Chemistry Letters
Tmax, time of maximum drug concentration; T1/2, terminal half-
T1/2 (h)
4.6 ± 1.1
3.2 ± 0.4
life; VP, viral capsid protein; VSS, steady-state volume of distribu-
tion
1
2
3
4
5
6
7
8
AUCt (µg·h·mL-1
)
31.3 ± 2.5
17.4 ± 5.4
( )
µg·h·mL-1
31.8 ± 2.8
17.4 ± 5.4
AUC∞
CL (L·h-1·kg-1
VSS
L·kg-1
Ft (%)
REFERENCES
0.158 ± 0.014
0.611 ± 0.029
NA
NA
NA
)
1. George, S. N.; Garcha, D. S.; Mackay, A. J.; Patel, A. R.; Singh,
R.; Sapsford, R. J.; Donaldson, G. C.; Wedzicha, J. A. Human rhino-
virus infection during naturally occurring COPD exacerbations. Eur.
Respir. J. 2014, 44, 87-96.
2. Gern, J. E. How rhinovirus infections cause exacerbations of
asthma. Clin. Exp. Allergy 2015, 45, 32-42.
3. Johnston, S. L.; Sanderson, G.; Pattemore, P. K.; Smith, S.; Bar-
din, P. G.; Bruce, C. B.; Lambden, P. R.; Tyrrell, D. A.; Holgate, S. T.
Use of polymerase chain reaction for diagnosis of picornavirus infec-
tion in subjects with and without respiratory symptoms. J. Clin. Mi-
crobiol. 1993, 31, 111-117.
4. Mallia, P.; Message, S. D.; Gielen, V.; Contoli, M.; Gray, K.;
Kebadze, T.; Aniscenko, J.; Laza-Stanca, V.; Edwards, M. R.; Slater,
L.; Papi, A.; Stanciu, L. A.; Kon, O. M.; Johnson, M.; Johnston, S. L.
Experimental rhinovirus infection as a human model of chronic ob-
structive pulmonary disease exacerbation. Am. J. Respir. Crit. Care
Med. 2011, 183, 734-742.
5. Message, S. D.; Laza-Stanca, V.; Mallia, P.; Parker, H. L.; Zhu,
J.; Kebadze, T.; Contoli, M.; Sanderson, G.; Kon, O. M.; Papi, A.;
Jeffery, P. K.; Stanciu, L. A.; Johnston, S. L. Rhinovirus-induced
lower respiratory illness is increased in asthma and related to virus
load and Th1/2 cytokine and IL-10 production. Proc. Natl. Acad. Sci.,
U. S. A. 2008, 105, 13562.
6. Seppala, E.; Sillanpaa, S.; Nurminen, N.; Huhtala, H.; Toppari,
J.; Ilonen, J.; Veijola, R.; Knip, M.; Sipila, M.; Laranne, J.; Oikarinen,
S.; Hyoty, H. Human enterovirus and rhinovirus infections are associ-
ated with otitis media in a prospective birth cohort study. J. Clin.
Virol. 2016, 85, 1-6.
7. Heymann, P. W.; Carper, H. T.; Murphy, D. D.; Platts-Mills, T.
A.; Patrie, J.; McLaughlin, A. P.; Erwin, E. A.; Shaker, M. S.; Hel-
lems, M.; Peerzada, J.; Hayden, F. G.; Hatley, T. K.; Chamberlain, R.
Viral infections in relation to age, atopy, and season of admission
among children hospitalized for wheezing. J. Allergy Clin. Immnol.
2004, 114, 239-247.
8. Khetsuriani, N.; Kazerouni, N. N.; Erdman, D. D.; Lu, X.; Redd,
S. C.; Anderson, L. J.; Teague, W. G. Prevalence of viral respiratory
tract infections in children with asthma. J. Allergy Clin. Immnol.
2007, 119, 314-321.
9. Rawlinson, W. D.; Waliuzzaman, Z.; Carter, I. W.; Belessis, Y.
C.; Gilbert, K. M.; Morton, J. R. Asthma exacerbations in children
associated with rhinovirus but not human metapneumovirus infection.
J. Infect. Dis. 2003, 187, 1314-1318.
10. Rubner, F. J.; Jackson, D. J.; Evans, M. D.; Gangnon, R. E.;
Tisler, C. J.; Pappas, T. E.; Gern, J. E.; Lemanske, R. F., Jr. Early life
rhinovirus wheezing, allergic sensitization, and asthma risk at adoles-
cence. J. Allergy Clin. Immnol. 2017, 139, 501-507.
11. Palmenberg, A. C.; Spiro, D.; Kuzmickas, R.; Wang, S.;
Djikeng, A.; Rathe, J. A.; Fraser-Liggett, C. M.; Liggett, S. B. Se-
quencing and Analyses of All Known Human Rhinovirus Genomes
Reveal Structure and Evolution. Science 2009, 324, 55.
12. Rossmann, M. G.; Arnold, E.; Erickson, J. W.; Frankenberger,
E. A.; Griffith, J. P.; Hecht, H. J.; Johnson, J. E.; Kamer, G.; Luo, M.;
Mosser, A. G.; et al. Structure of a human common cold virus and
functional relationship to other picornaviruses. Nature 1985, 317,
145-153.
13. Colonno, R. J.; Condra, J. H.; Mizutani, S.; Callahan, P. L.;
Davies, M. E.; Murcko, M. A. Evidence for the direct involvement of
the rhinovirus canyon in receptor binding. Proc. Natl. Acad. Sci. U. S.
A. 1988, 85, 5449-5453.
14. Hofer, F.; Gruenberger, M.; Kowalski, H.; Machat, H.;
Huettinger, M.; Kuechler, E.; Blaas, D. Members of the low density
lipoprotein receptor family mediate cell entry of a minor-group com-
mon cold virus. Proc. Natl. Acad. Sci. U. S. A. 1994, 91, 1839-1842.
(
)
27.8
aEach value is presented as mean ± standard deviation of at least
three independent experiments. bParameters from intravenous
administration. cParameters from oral administration.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
Conclusion
In this study, we used antiviral compound 1 as starting ma-
terial for developing two novel compound series, derivatives 2
and 3, that we examined for their inhibitory activity against
hRV-B14, A21, and A71. We showed that substituting the
ester moiety of compound 1 by a 1,2,4-oxadiazole group in 2
and 3 created molecules with antiviral activity and significant
metabolic stability. Several compounds were highly active
with EC50 values in the nanomolar range against the three hRV
species. Specifically, compound 3k displayed a high efficacy
against hRV-B14, hRV-A21, and hRV-A71, with EC50 values
of 66.0, 22.0, and 3.7 nM, respectively. In addition, the hepatic
stability of 3k was better than compound 1 in rat microsomes
and similar for both compounds in human microsomes. A
pharmacokinetics analysis of 3k in rats demonstrated that the
inhibitor had a low systemic clearance and a moderate oral
bioavailability. Hence, 3k represents an interesting candidate
for the development of novel antiviral lead compounds.
ASSOCIATED CONTENT
Supporting Information
Detailed synthetic procedures, UPLC purity and characterization
1
data for compounds 2–3, including the spectral copies of H and
13C NMR spectra (PDF). This material is available free of charge
on the ACS Publications website.
AUTHOR INFORMATION
Corresponding Author
* E-mail: ysjung@krict.re.kr
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENT
This study was supported by Korea Research Institute of Chemi-
cal Technology (Grant No. KK1703-C00, KK1703-E00, and
KK1803-D00).
ABBREVIATIONS
AUCt, areas under the plasma concentration-time curve; AUC∞,
areas under the plasma concentration-time curve from time zero;
CL, total clearance from plasma; Cmax, maximum plasma concen-
tration; DMF, dimethylformamide; Ft, bioavailability; hRV, hu-
man rhinovirus; ICAM-1, intracellular adhesion molecule 1;
MTT, 3-(4,5-dimethylthiazol-2yl)-2,5-diphenyltetrazolium bro-
mide; TFAA, trifluoroacetic anhydride; THF, tetrahydrofuran;
ACS Paragon Plus Environment