Journal of the American Chemical Society
Communication
Scheme 5. Possible Diastereocontrol Model for Systems with
R2/R3 Substituents
REFERENCES
■
(1) Selected reviews: (a) Lautens, M.; Klute, W.; Tam, W. Chem. Rev.
1996, 96, 49. (b) Inglesby, P. A.; Evans, P. A. Chem. Soc. Rev. 2010, 39,
2791. (c) Jiao, L.; Yu, Z.-X. J. Org. Chem. 2013, 78, 6842. (d) Ylijoki, K. E.
O.; Stryker, J. M. Chem. Rev. 2013, 113, 2244.
(2)(a)Shaw, M.H.;Melikhova, E. Y.;Kloer, D. P.;Whittingham, W.G.;
Bower, J. F. J. Am. Chem. Soc. 2013, 135, 4992. (b) Shaw, M. H.;
McCreanor, N. G.; Whittingham, W. G.; Bower, J. F. J. Am. Chem. Soc.
2015, 137, 463. (c) Shaw, M. H.; Croft, R. A.; Whittingham, W. G.;
Bower, J. F. J. Am. Chem. Soc. 2015, 137, 8054. (d) Shaw, M. H.;
Whittingham, W. G.; Bower, J. F. Tetrahedron 2016, 72, 2731.
(e) McCreanor, N. G.; Stanton, S.; Bower, J. F. J. Am. Chem. Soc. 2016,
138, 11465.
(3) For a review on rhodacyclopentanone-based catalysis, see:
(a) Shaw, M. H.; Bower, J. F. Chem. Commun. 2016, 52, 10817. Selected
recent contributions: (b) Zhou, X.; Dong, G. J. Am. Chem. Soc. 2015, 137,
13715. (c) Ko, H. M.; Dong, G. Nat. Chem. 2014, 6, 739. (d) Souillart, L.;
Parker, E.;Cramer, N. Angew. Chem., Int.Ed. 2014, 53, 3001. (e)Souillart,
L.; Cramer, N. Angew. Chem., Int. Ed. 2014, 53, 9640. (f) Matsuda, T.;
Tsuboi, T.; Murakami, M. J. Am. Chem. Soc. 2007, 129, 12596.
(g)Murakami, M.;Itahashi, T.;Ito, Y. J. Am. Chem. Soc. 2002, 124, 13976.
(4) Lovering, F.; Bikker, J.; Humblet, C. J. Med. Chem. 2009, 52, 6752.
(5) The use of 6-ring chelates to trigger C−C activation is unusual:
Souillart, L.; Cramer, N. Chem. Rev. 2015, 115, 9410.
(6) Review on aminocyclopropanes: Rassadin, V. A.;Six, Y. Tetrahedron
2016, 72, 4701. Our observations are consistent with electron donation
from the cyclopropane unit to Rh being a key factor in C−C activation.
(7) Chen, P.-h.; Sieber, J.; Senanayake, C. H.; Dong, G. Chem. Sci. 2015,
6, 5440.
neutral Rh(I)-complexes, the requisite free coordination site may
be provided by relatively facile dissociation of the directing group
of the weaker 6-ring chelate. Indeed, in the absence of directing
groups, Murakami and Ito have shown that cyclobutanone-
derived neutral rhodacyclopentanone complexes undergo
retrocarbonylation and C−C reductive elimination to provide
cyclopropanes.18 The enhanced diastereoselectivities observed in
Table 2 for N-Ts vs N-Cbz protected systems may reflect
increased reversibility for rhodacyclopentanone formation and/
or enhanced conformational preferences for alkene insertion due
to the greater sp3 character at nitrogen.
In summary, we show that directed carbonylative C−C bond
activation can be extended beyond aminocyclopropane-based
systems to readily available aminomethylcyclopropane deriva-
tives. The resulting (3 + 1 + 2) cycloaddition methodology
provides exceptionally flexible and controlled access to stereo-
chemically complex perhydroisoindoles. This study represents a
significant extension to the cycloaddition strategy outlined in
Scheme 1A, validating for the first time electronically distinct
cyclopropanes and 6-ring chelate driven processes. Applications
of the new initiation mode described here to other diverse
processes can easily be envisaged. Indeed, in addition to (3 + 1 +
2) cycloadditions,2a,b,d carbonylative C−C bond activation of
aminocyclopropanes now underpins (7 + 1) cycloadditions2c and
capture−collapse heterocyclizations.2e
(8) Review: Speck, K.; Magauer, T. Beilstein J. Org. Chem. 2013, 9, 2048.
(9) Carbonylative (3 + 1 + 2)/(3 + 2 + 1) cycloadditions of
cyclopropane-based systems with alkenes: (a) Vinylcyclopropanes: Jiao,
L.; Lin, M.; Zhuo, L.-G.; Yu, Z.-X. Org. Lett. 2010, 12, 2528. (b)
Cyclopropenes: Li, C.; Zhang, H.; Feng, J.; Zhang, Y.; Wang, J. Org. Lett.
2010, 12, 3082. (c) Alkylidenecyclopropanes: Mazumder, S.; Shang, D.;
Negru, D. E.;Baik,M.-H.;Evans, P.A. J. Am. Chem. Soc. 2012,134,20569.
(d) Vinylidenecyclopropanes: Lu, B.-L.; Wei, Y.; Shi, M. Organometallics
2012, 31, 4601. Under forcing conditions, electron neutral cyclo-
propanes engage incarbonylative (3 +1+2) cycloadditionswith alkynes,
withthelatterdirectingC−Cactivation:(e)Narasaka, K.;Koga, Y. Chem.
Lett. 1999, 28, 705.
(10) For the processes described later we cannot definitively rule out an
alkenedirectedpathway. InadditiontotheresultsinScheme2A/Table1,
further evidence against this activation mode includes the following: (a)
under optimized conditions, the cycloadditions in Table 2 are insensitive
tothestericsoftheR3-substituent(e.g., underConditionsB, 8i(Pr):61%
yield vs 8k (i-Pr): 67% yield), but sensitive to the sterics of the R2-
substituent, and (b) systems where DG = benzyl (cf. Table 1) are
ineffective.
ASSOCIATED CONTENT
* Supporting Information
TheSupportingInformationisavailablefreeofchargeontheACS
■
S
(11)Wehavebeenunabletoisolaterhodacyclopentanones related to5;
analogous 5-ring chelates (3) are easily isolated (see refs 2a−c).
(12) Directed insertion into N-cyclopropylsulfonamides has been
achieved previously (see ref 2d).
Experimental details, characterization data (PDF)
(13) Representative product derivatizations and results for alternate
cycloaddition conditions are given in the SI.
(14) Murray, S. G.; Hartley, F. R. Chem. Rev. 1981, 81, 365.
(15) Walton, R. A. J. Chem. Soc. A 1967, 1852.
AUTHOR INFORMATION
Corresponding Author
Notes
■
(16) Sulfides are commonly used as part of P,S-ligand systems: Lam, F.
L.; Kwong, F. Y.; Chan, A. S. C. Chem. Commun. 2010, 46, 4649.
(17) Approximately $3.60/g from Sigma-Aldrich. Binding competition
studies for P(3,5-(CF3)2C6H3)3 vs AsPh3 vs 1,4-oxathiane are in the SI.
(18) Here, neutral Rh(I) systems modified with AsPh3 were especially
effective (cf. Conditions A). (a) Murakami, M.; Amii, H.; Ito, Y. Nature
1994, 370, 540. (b) Murakami, M.; Amii, H.; Shigeto, K.; Ito, Y. J. Am.
Chem. Soc. 1996, 118, 8285.
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
WethanktheBristolChemicalSynthesisCDT,fundedbyEPSRC
(EP/G036764/1), and Syngenta for studentships (M.H.S. and
N.G.M.), the Royal Society for a URF (J.F.B.) and a K. C. Wong
Postdoctoral Fellowship (G.-W.W.), and the European Research
Council for financial support (ERC grant 639594 CatHet). We
also thank Emma Blackham (Bristol) for preliminary studies.
D
J. Am. Chem. Soc. XXXX, XXX, XXX−XXX