E. S. Priestley et al. / Bioorg. Med. Chem. Lett. 12 (2002) 3199–3202
3201
Our initial experiments focused on peptides containing
linear alkyl (1–4), terminally branched alkyl (5–7), and
aralkyl (8–12) P1 residues. Table 1 shows enzyme
inhibition data for these compounds against the cataly-
tic domain of NS3 protease and two other serine pro-
teases, human leukocyte elastase and human pancreatic
chymotrypsin.24À27
theless, our results will facilitate the design of next-gen-
eration HCV protease inhibitors based on both cyclic
peptide and peptidomimetic structures.
Acknowledgements
The authors thank Dr. Charles Kettner for generously
providing the pinacol esters of boronorleucine and
borophenylalanine and Larry Mersinger for measuring
the NS3 Ki values. We thank Lorraine Gorey-Feret and
Marina Bukhityarova for determining IC50 values for
NS3, elastase, and chymotrypsin.
The extended linear alkyl residues (2–4) each give com-
parable potency to ethyl (1) for NS3 protease, and have
only modest selectivity over chymotrypsin (30- to 190-
fold). The branched alkyls isobutyl (5) and 4-methyl-
pentyl (7) also afford inhibitors with potency compar-
able to 1, while isoamyl (6) induces a 5-fold loss in
potency. In addition, 7 has 1000-fold selectivity over
elastase and 40-fold selectivity over chymotrypsin. The
aralkyls display a more defined structure–activity rela-
tionship than either the linear or branched alkyls. Pep-
tides containing P1 phenyl (8), benzyl (9), and
phenpropyl (11) are 25- to 100-fold less potent than (1),
while the phenethyl (10) and phenbutyl (12) peptides
maintain low nanomolar potency. Compound 10
has more than 400-fold selectivity over elastase, but
only 9-fold selectivity over chymotrypsin. Inhibition of
other serine proteases has been previously observed by
peptide boronic acids with P1 phenethyl residues.28,29
References and Notes
1. Lauer, G. M.; Walker, B. D. N. Engl. J. Med. 2001, 345,
41.
2. Manns, M. P.; McHutchison, J. G.; Gordon, S. C.; Rustgi,
V. K.; Shiffman, M.; Reindollar, R.; Goodman, Z. D.; Koury,
K.; Ling, M.-H.; Albrecht, J. K. and the International Hepa-
titus Interventional Therapy Group Lancet 2001, 358, 958.
3. Bartenschlager, R.; Lohmann, V. J. Gen. Virol. 2000, 81,
1631.
4. Bartenschlager, R. J. Viral Hepatitis 1999, 6, 165.
5. Love, R. A.; Parge, H. E.; Wickersham, J. A.; Hostomsky,
Z.; Habuka, N.; Moomaw, E. W.; Adachi, T.; Hostomska, Z.
Cell 1996, 87, 331.
6. Kim, J. L.; Morgenstern, K. A.; Lin, C.; Fox, T.; Dwyer,
M. D.; Landro, J. A.; Chambers, S. P.; Markland, W.; Lepre,
C. A.; O’Malley, E. T.; Harbeson, S. L.; Rice, C. M.; Murko,
M. A.; Caron, P. R.; Thomson, J. A. Cell 1996, 87, 343.
7. Yao, N.; Reichert, P.; Taremi, S. S.; Prosise, W. W.;
Weber, P. C. Structure 1999, 7, 1353.
8. Di Marco, S.; Rizzi, M.; Volpari, C.; Walsh, M. A.; Narjes,
F.; Colarusso, S.; De Francesco, R.; Matassa, V. G.; Sollazzo,
M. J. Biol. Chem. 2000, 275, 7152.
9. Kolykhalov, A. A.; Agapov, E. V.; Blight, K. J.; Mihalik,
K.; Feinstone, S. M.; Rice, C. M. Science 1997, 277, 570.
10. Kolykhalov, A. A.; Mihalik, K.; Feinstone, S. M.; Rice,
C . M.J. Virol. 2000, 74, 2046.
11. For a description of the protease nomenclature, see:-
Schechter, I.; Berger, A. Biochem. Biophys. Res. Commun.
1967, 27, 157.
12. Kettner, C. A.; Shenvi, A. B. J. Biol. Chem. 1984, 259,
15106.
13. Urbani, A.; Bianchi, E.; Narjes, F.; Tramontano, A.; De
Francesco, R.; Steinkuhler, C.; Pessi, A. J. Biol. Chem. 1997,
272, 9204.
14. Zhang, R.; Durkin, J.; Windsor, W. T.; McNemar, C.;
Ramanathan, L.; Le, H. V. J. Virol. 1997, 71, 6208.
15. Llinas-Brunet, M.; Bailey, M.; Fazal, G.; Goulet, S.; Hal-
mos, T.; Laplante, S.; Maurice, R.; Poirier, M.; Poupart, M.-
A.; Thibeault, D.; Wernic, D.; Lamarre, D. Bioorg. Med.
Chem. Lett. 1998, 8, 1713.
16. Llinas-Brunet, M.; Bailey, M.; Deziel, R.; Fazal, G.;
Gorys, V.; Goulet, S.; Halmos, T.; Maurice, R.; Poirier, M.;
Poupart, M.-A.; Rancourt, J.; Thibeault, D.; Wernic, D.;
Lamarre, D. Bioorg. Med. Chem. Lett. 1998, 8, 2719.
17. Ingallinella, P.; Altamura, S.; Bianchi, E.; Taliani, M.;
Ingenito, R.; Cortese, R.; De Francesco, R.; Steinkuhler, C.;
Pessi, A. Biochemistry 1998, 37, 8906.
We subsequently investigated the properties of a series
of peptides with substituted phenethyl residues at P1 in
order to improve the potency and selectivity of the lead
structure 10 (Table 2). Substitution of the phenethyl
group at the para position is clearly preferred over ortho
substitution and equivalent or superior to meta sub-
stitution (compare 13, 14, and 15; 18, 19, and 20; 22 and
23). Disubstitution is unacceptable, even with a para
substituent (16, 17, and 21). At the para position, all
substituents tested afforded potent inhibitors, including
alkyl (15, 27, 28, and 29), aryl (26), electron-with-
drawing (20, 23, 24, and 25), and electron-donating (30,
31, and 32). Compounds with para substituted P1 resi-
dues show modest potency for elastase (IC50=0.2–5
mM) and highly variable potency for chymotrypsin
(IC50=0.050 to >60 mM). Two conclusions regarding
chymotrypsin inhibition may be drawn: A para halogen
substituent improves chymotrypsin affinity (20 and 24)
and a sterically bulky para substituent abrogates chy-
motrypsin binding (26, 27, 28, 29, and 32). Finally, the
p-trifluoromethylphenethyl residue (23) appears optimal
in this series in terms of NS3 potency (4-fold more
potent than 1) and selectivity (900-fold versus elastase
and 8000-fold vs chymotrypsin).
In summary, we have investigated a series of peptide
boronic acids containing extended P1 residues as inhib-
itors of HCV NS3 protease. The 4-trifluoro-
methylphenethyl residue was identified as optimal with
respect to inhibitor potency and selectivity. Within the
P1 phenethyl series, substantial effects on inhibitor
potency and selectivity were observed with changes in
the position and identity of the aromatic ring sub-
stituents. A clear understanding of the observed struc-
ture–activity relationships awaits a crystal structure of
one of these peptides bound to NS3 protease. None-
18. Matteson, D. S.; Majumdar, D. J. Am. Chem. Soc. 1980,
102, 7588.
19. Matteson, D. S.; Ray, R. J. Am. Chem. Soc. 1980, 102,
7590.