Scheme 1
Scheme 2a
a Reagents and conditions: (a) Na, NH3, Et2O, -78 °C, >98%;
(b) DMSO, (COCl)2, NEt3, CH2Cl2, >98%; (c) PPh3, CBr4, Zn,
CH2Cl2, 22 °C, 63%; (d) HFaq (48%), MeCN, 22 °C, 82%; (e) NaH,
THF, NaI, PMBCl, 0 °C, 94%; (f) BuLi, THF, - 78 to 0 °C, then
(CH2O)n, 80%; (g) Ms2O, DIPEA, CH2Cl2, 0 °C, >98%; (h) NaH,
THF, 16 (0.2 equiv relative to 15), -78 °C, 73%, 65% recovered
15.
Furthermore, elaboration of such simple rearrangement
products as 3 into the final azadirachtin skeleton through a
biomimetic sequence initiated from 4 would be costly in
terms of overall synthetic convergence. Here, we report a
method for generating an advanced intermediate 7 by way
of a microwave-assisted Claisen rearrangement10 of the
corresponding propargylic enol ether 5; appropriate substitu-
tion of this precursor allows subsequent radical cyclization
to form the bicyclo[3.2.1] ring system present in azadirachtin
in a more rapid way (Scheme 1, path b) than is possible
with the allylic enol ether systems (i.e. 2).11
On the basis of the above considerations, we elected to
prepare the substituted pyran 15. The coupling of 15 onto
the known Decalin ketone 1612 would set up the Claisen
rearrangement and then by functional group manipulation
provide access to an appropriate substrate for the radical
cyclization. 15 was prepared in seven steps in 37% overall
yield, starting from trityl protected alcohol 8 (Scheme 2).13
Selective deprotection under reductive conditions, Swern
oxidation, and Corey-Fuchs olefination14 of the unstable
aldehyde provided the dibromoalkene 11. Subsequent silyl
removal with aqueous HF occurred in 82% yield and was
factors is responsible for the lack of a total synthesis of 1 to
date, despite significant attempts by the synthetic com-
munity.7 In an earlier communication, we reported on the
potential of using a Claisen rearrangement of simple allylic
enol ethers such as 2 as a means of generating the C8-C14
bond (Scheme 1, path a)8 that we have found resistant to
more direct, intermolecular coupling methods due to the
extreme steric hindrance at this site.9 Unfortunately, attempts
to increase the complexity of the pendant allyl groups
consistently resulted in inhibition of the critical rearrange-
ment process, thus obviating the use of this route to install
the tetracyclic right-hand portion of 1 in a single operation.
(6) (a) Turner, C. J.; Tempesta, M. S.; Taylor, R. B.; Zagorski, M. G.;
Termini, J. C.; Schroeder, D. R.; Nakanishi, K. Tetrahedron 1987, 43,
2789-2803. (b) Kraus, W.; Bokel, M.; Klenk, A.; Pohnl, H. Tetrahedron
Lett. 1985, 26, 6435-6438. (c) Broughton, H. B.; Ley, S. V.; Lidert, Z.;
Slawin, A. M. Z.; Williams, D. J.; Morgan, E. D. J. Chem. Soc., Chem.
Commun. 1986, 46-47.
(7) (a) Nicolaou, K. C.; Roecker, A. J.; Follmann, M.; Baati, R. Angew.
Chem., Int. Ed. 2002, 41, 2107-2110. (b) Nicolaou, K. C.; Follmann, M.;
Roecker, A. J.; Hunt, K. W. Angew. Chem., Int. Ed. 2002, 41, 2103-2106.
(c) Yamamoto, Y.; Ishihara, J.; Kanoh, N.; Murai, A. Synthesis 2000, 13,
1894-1906. (d) Watanabe, H.; Watanabe, T.; Mori, K.; Kitahara, T.
Tetrahedron Lett. 1997, 38, 4429-4432. (e) Scheliger, H.; Winterfeldt, E.
Chirality 1997, 9, 454-458. (f) Henry, K. J., Jr.; Fraser-Reid, B. J. Org.
Chem. 1994, 59, 5128-5129. (g) Chen, X. T.; Luo, Y. L.; Zhu, Q. B.;
Wang, Z. Q. Chin. Chem. Lett. 1992, 3, 971-974. (h) Kenji, M.; Watanabe,
H. Chemistry 1989, 44, 68-69. (i) Nisikimi, Y.; Iimori, T.; Sodeoka, M.;
Shibasaki, M. J. Org. Chem. 1989, 54, 3354-3359. Added in proof:
Fukuzaki, T.; Kobayashi, S.; Hibi, T.; Ikuma, Y.; Ishihara, J.; Kanoh, N.;
Murai, A. Org. Lett. 2002, 4, 2877-2880.
(10) (a) Lidstrom, P.; Tierney, J.; Wathey, B.; Westman, J. Tetrahedron
2001, 57, 9225-9283. (b) Caddick, S. Tetrahedron 1995, 51, 10403-10432.
(c) Strauss, C. R.; Trainor, R. W. Aust. J. Chem. 1995, 48, 1665-1695.
(11) Elaboration to the 2,4-dioxatricyclo[6.2.1.0]undecane acetal by
epoxidation and dihydroxyfuran ring formation remains a focus of our
ongoing research. For a similar synthesis on a model system, see: Anderson,
J. C.; Ley, S. V. Tetrahedron Lett. 1990, 31, 431-432.
(12) (a) Ley, S. V.; Lovell, P. J.; Slawin, A. M. Z.; Smith, S. C.; Williams,
D. J.; Wood, A. Tetrahedron 1993, 49, 1675-1700. (b) Kolb, H. C.; Ley,
S. V. Tetrahedron Lett. 1991, 32, 6187-6190.
(8) Ley, S. V.; Gutteridge, C. E.; Pape, A. R.; Spilling, C. D.; Zumbrunn,
C. Synlett 1999, 8, 1295-1297.
(9) Koot, W.-J.; Ley, S. V. Tetrahedron 1995, 51, 2077-2090.
(13) Rosen, T.; Taschner, M. J.; Heathcock, C. H. J. Org. Chem. 1984,
49, 3994-4003.
(14) Corey, E. J.; Fuchs, P. L. Tetrahedron Lett. 1972, 36, 3769-3772.
3848
Org. Lett., Vol. 4, No. 22, 2002