Cycloadditions of Sugar-Derived Dihydropyranones with Dienes
1
finished, the mixture was stirred at the temperature and for
the time indicated in Table 2. The reaction mixture was diluted
with ethyl ether, washed with satd aq NaHCO3, dried (MgSO4),
and concentrated. Addition of hexane to the residue produced
the precipitation of polymeric material. The hexane solution
was subjected to flash chromatography with 1-2% EtOAc in
hexane affording the corresponding cycloadducts. Thus, start-
ing from 8a (137 mg, 0.67 mmol) and cyclopentadiene, 12a
(103.3 mg, 57.0%), 13a (7.0 mg, 3.9%), and 14a (5.3 mg, 2.9%)
were obtained. Similarly, reaction of 8a (416 mg, 2.04 mmol)
with 1,3-cyclohexadiene gave 16a (314 mg, 54.2%) and 17a
(together with 18a , total 80 mg, 13.8%).
-114.3 (c 0.9, CHCl3); H NMR (500 MHz, CDCl3) δ 7.30 (br
s, 5, H-aromatic), 6.25 (br t, 1, J 6,7 ) 7.6 Hz, J 7,8 ) 6.5 Hz, J 5,7
< 1 Hz, H-7), 6.18 (ddd, 1, J 5,6 ) 6.5 Hz, J 6,8 ) 1.1 Hz, H-6),
4.75, 4.59 (2 d, 2, J ) 11.9 Hz, PhCH2O), 4.51 (br s, 1, H-3),
4.06 (dd, 1, J 1,8a ) 5.1 Hz, J 1,1′ ) 12.1 Hz, H-1), 3.33 (dd, 1,
J 1′,8a ) 6.3 Hz, H-1′), 3.07 (m, 1, H-5), 2.86 (dd, 1, J 4a,5 ) 3.0
Hz, J 4a,8a ) 10.0 Hz, H-4a), 2.53 (dddd, 1, J 8a,8 ) 1.5 Hz, H-8a),
2.50 (m, 1, H-8), 1.62 (m, 1, H-9), 1.55 (m, 1, H-10), 1.32 (m, 1,
H-10′), 1.27 (m, 1, H-9′); 13C NMR (50.3 MHz, CDCl3) δ 206.2
(C-4), 137.0, 128.5, 128.1, 127.9 (C-aromatic), 134.1, 132.7 (C-
6,7), 97.9 (C-3), 70.1 (PhCH2O), 64.6 (C-1), 49.4 (C-4a), 39.3
(C-8a), 34.1, 32.6 (C-5,8), 26.1, 23.3 (C-9,10). Anal. Calcd for
C
18H20O3: C, 76.03; H, 7.09. Found: C, 75.77; H, 7.33.
The starting dihydropyranone 8a , employed for all these
reactions, had an ee >86%; therefore, the respective cycload-
ducts 12a -14a and 16a exhibited the same optical purity. The
enantiomeric composition for the major products was deter-
mined by 1H NMR experiments with ytterbium tris[3-(hep-
tafluoropropylhydroxymethylene)-(+)-camphorate] and it is
indicated in any individual case. Compounds 12a -14a and
16a -18a showed the following properties (the reported Rf
values were determined using hexane/EtOAc, 5:2).
(3S,4a R,5S,8R,8a S)-3-Ben zyloxy-4a ,5,8,8a -tetr a h yd r o-
5,8-m et h a n o-1H -2-b en zop yr a n -4(3H )-on e (r-E n d o-Ad -
d u ct, 12a ). The major product 12a (ee > 86%, Rf ) 0.56) gave
[R]D -123.4 (c 1.2, CHCl3); 1H NMR (500 MHz, CDCl3) δ 7.33
(br s, 5, H-aromatic), 6.20 (dd, 1, J 6,7 ) 5.6 Hz, J 7,8 ) 3.0 Hz,
H-7), 6.07 (dd, 1, J 5,6 ) 2.9 Hz, H-6), 4.71, 4.55 (2 d, 2, J )
11.7 Hz, PhCH2O), 4.38 (br s, 1, H-3), 4.21 (dd, 1, J 1,8a ) 6.0
Hz, J 1,1′ ) 12.2 Hz, H-1ax), 3.49 (dd, 1, J 1′,8a ) 3.3 Hz, H-1′eq),
3.35 (m, 1, H-5), 3.05 (dd, 1, J 4a,5 ) 4.3 Hz, J 4a,8a ) 9.3 Hz,
H-4a), 2.95 (br s, 1, H-8), 2.67 (dddd, 1, J 8,8a ) 3.0 Hz, H-8a),
1.43 (dt, 1, J 5,9 ∼ J 8,9 ∼ 1.8 Hz, J 9,9′ ) 8.4 Hz, H-9), 1.32 (br d,
1, J 5,9′ ∼ J 8,9′ < 1 Hz, H-9′); 13C NMR (50.3 MHz, CDCl3) δ
204.8 (C-4), 136.9, 128.5, 128.1, 128.0 (C-aromatic), 136.0,
135.1 (C-6,7), 96.9 (C-3), 69.9 (PhCH2O), 61.0 (C-1), 49.3 (C-
9), 48.3, 47.5, 47.4 (C-4a,5,8), 37.5 (C-8a). Anal. Calcd for
Compound 16a , obtained by the Et2O‚BF3-catalyzed cy-
cloaddition, showed the same properties as those described
above.
(3S,4a S,5R,8S,8a R)-3-Ben zyloxy-4a ,5,8,8a -tetr a h yd r o-
5,8-eth a n o-1H-2-ben zop yr a n -4(3H)-on e (â-En d o-Ad d u ct,
17a ) a n d (3R,4a R,5S,8R,8a S)-3-Ben zyloxy-4a ,5,8,8a -tet-
r a h yd r o-5,8-eth a n o-1H-2-ben zop yr a n -4(3H)-on e (18a , C-3
Isom er iza tion P r od u ct of 16a ). The byproduct (17a ) of the
thermal cycloaddition of 8a with 1,3-cyclohexadiene was
isolated by flash chromatography (Rf ) 0.60). Compound 17a
1
gave [R]D +10.4 (c 1.0, CHCl3); H NMR (500 MHz, CDCl3) δ
7.32 (m, 5, H-aromatic), 6.32 (ddd, 1, J 6,7 ) 7.2 Hz, J 5,6 ) 6.4
Hz, J 6,8 ) 1.1 Hz, H-6), 6.05 (t, 1, J 7,8 ) 6.7 Hz, J 5.7 < 1 Hz,
H-7), 4.74, 4.60 (2 d, 2, J ) 12.2 Hz, PhCH2O), 4.73 (br s, 1,
H-3), 3.73 (dd, 1, J 1,8a ) 6.4 Hz, J 1,1′ ) 11.7 Hz, H-1eq), 3.30
(dd, 1, J 1′,8a ) 12.1 Hz, H-1′ax), 3.17 (br m, 1, H-5), 2.80 (dddd,
1, J 4a,8a ) 10.5 Hz, J 8,8a ) 1.3 Hz, H-8a), 2.59 (dd, 1, J 4a,5 ) 2.7
Hz, H-4a), 2.38 (br s, 1, H-8), 1.59 (m, 1, H-9), 1.53 (m, 1, H-10),
1.33 (m, 2, H-9′,10′); 13C NMR (50.3 MHz, CDCl3) δ 206.4 (C-
4), 137.1, 128.3, 128.0, 127.7 (C-aromatic), 135.0, 132.0 (C-
6,7), 96.7 (C-3), 69.1 (PhCH2O), 64.5 (C-1), 49.7 (C-4a), 41.5
(C-8a), 31.0, 30.1 (C-5,8), 25.5, 23.4 (C-9,10). Anal. Calcd for
C
18H20O3: C, 76.03; H, 7.09. Found: C, 75.70; H, 7.28.
C
17H18O3: C, 75.53; H, 6.71. Found: C, 75.29; H, 6.76.
(3S,4a R,5R,8S,8a S)-3-Ben zyloxy-4a ,5,8,8a -tetr a h yd r o-
The analogous Et2O‚BF3-promoted reaction afforded a minor
1
product having [R]D -6.7 (c 1.0, CHCl3) and H and 13C NMR
spectra identical with those of 17a , described above. In fact,
the product proved to be (see next) a partially racemic mixture
of 18a and 17a (4:1 ratio).
5,8-m eth a n o-1H-2-ben zop yr a n -4(3H)-on e (r-Exo-Ad d u ct,
13a ). For the less polar adduct 13a (ee > 86%, Rf ) 0.62); 1H
NMR (500 MHz, CDCl3) δ 7.35 (br s, 5, H-aromatic), 6.27, 6.19
(2 dd, 2, J 5,6 ) J 7,8 ) 2.9 Hz, J 6,7 ) 5.5 Hz, H-6,7), 4.77, 4.61
(2 d, 2, J ) 11.7 Hz, PhCH2O), 4.68 (br s, 1, H-3), 4.35 (dd, 1,
J 1,8a ) 5.5 Hz, J 1,1′ ) 12.4 Hz, H-1ax), 3.70 (dd, 1, J 1′,8a ) 3.1
Hz, H-1′eq), 3.24 (br s, 1, H-5), 2.76 (br s, 1, H-8), 2.35 (br d,
1, J 4a,8a ) 8.8 Hz, H-4a), 1.89 (dddd, 1, J 8,8a ) 1.8 Hz, H-8a),
1.59 (d, 1, J 5,9 ∼ J 8,9 < 1.0 Hz, J 9,9′ ) 9.1 Hz, H-9), 1.28 (ddd,
1, J 5,9′ ) J 8,9′ ) 1.8 Hz, H-9′); 13C NMR (50.3 MHz, CDCl3) δ
205.9 (C-4), 139.0, 136.4 (C-6,7), 136.8, 128.5, 128.2, 128.0 (C-
aromatic), 96.9 (C-3), 70.1 (PhCH2O), 63.1 (C-1), 48.6, 48.1,
46.9 (C-4a,5,8), 44.9 (C-9), 36.9 (C-8a).
Con ver sion of th e r-En d o Ad d u ct 16a in to 18a . A
solution of 16a (52 mg, 0.18 mmol) in dry toluene (1 mL) was
cooled to -18 °C and Et2O‚BF3 (22.6 µL, 0.18 mmol) was added
under argon. The mixture was stirred at 0 °C, and TLC showed
gradual conversion of the starting 16a (Rf ) 0.68) into a slower
migrating product (Rf ) 0.60) that had the same mobility of
17a . After 25 min the mixture was subjected to the usual
workup, and the resulting crude product was flash chromato-
graphed to afford 18a ; [R]D -11.2 (c 0.9, CHCl3) and 1H and
13C NMR spectra identical with those of its enantiomer 17a .
(3S,4a S,5R,8S,8a R)-3-Ben zyloxy-4a ,5,8,8a -tetr a h yd r o-
5,8-m et h a n o-1H -2-b en zop yr a n -4(3H )-on e (â-E n d o-Ad -
d u ct, 14a ). The more polar product 14a (ee > 86%, Rf ) 0.46)
Ad d u cts of Dih yd r op yr a n on e 8b w ith Cyclop en ta d i-
en e: (3S,4a R,5S,8R,8a S)-3-[(R)-2′-Octyloxy]-4a ,5,8,8a -tet-
r a h yd r o-5,8-m eth a n o-1H-2-ben zop yr a n -4(3H)-on e (12b)
a n d (3S,4a S,5R,8S,8a R)-3-[(R)-2′-Octyloxy]-4a ,5,8,8a -tet-
r a h yd r o-5,8-m eth a n o-1H-2-ben zop yr a n -4(3H)-on e (14b).
The general Et2O‚BF3-promoted cycloaddition procedure was
followed starting from 8b (72 mg, 0.32 mmol) and freshly
distilled cyclopentadiene (57 mg, 0.86 mmol). The usual
workup of the reaction mixture and flash chromatography
purification afforded first the less polar R-endo-adduct 12b (54
mg, 58%); [R]D -100.3 (c 1.0, CHCl3); 1H NMR (500 MHz,
CDCl3) δ 6.20 (dd, 1, J 6,7 ) 5.6 Hz, J 7,8 ) 3.1 Hz, H-7), 6.10
(dd, 1, J 5,6 ) 2.8 Hz, H-6), 4.38 (br s, 1, H-3), 4.22 (dd, 1, J 1,1′
) 12.3 Hz, J 1,8a ) 6.1 Hz, H-1), 3.74 (m, 1, J ) 6.1 Hz, HCO
octyl), 3.44 (dd, 1, J 1′,8a ) 3.4 Hz, H-1′), 3.37 (br s, 1, H-5),
3.07 (dd, 1, J 4a,5 ) 4.3 Hz, J 4a,8a ) 9.5 Hz, H-4a), 2.96 (br s, 1,
H-8), 2.67 (dddd, 1, J 8,8a ) 3.2 Hz, H-8a), 1.44 (dt, 1, J 5,9 ∼ J 8,9
∼ 1.8 Hz, J 9,9′ ) 8.5 Hz, H-9), 1.34 (br d, 1, H-9′), 1.62-1.27
(m, 10, CH2 octyl), 1.14 (d, 3, J ) 6.1 Hz, CH3-1 octyl), 0.90 (t,
3, J ) 6.1 Hz, CH3-8 octyl); 13C NMR (125 MHz, CDCl3) δ 205.5
(C-4), 136.1, 134.9 (C-6,7), 95.6 (C-3), 73.9 (C-2 octyl), 61.0 (C-
1
gave mp 59-60 °C; [R]D +29.2 (c 1.1, CHCl3); H NMR (500
MHz, CDCl3) δ 7.35 (m, 5, H-aromatic), 6.27 (dd, 1, J 5,6 ) 2.8
Hz, J 6,7 ) 5.7 Hz, H-6), 5.95 (dd, 1, J 7,8 ) 3.0 Hz, H-7), 4.73,
4.60 (2 d, 2, J ) 12.4 Hz, PhCH2O), 4.67 (br s, 1, H-3), 3.91
(dd, 1, J 1,1′ ) 11.5 Hz, J 1,8a ) 6.6 Hz, H-1eq), 3.32 (br s, 1,
H-5), 3.17 (dd, 1, J 1′,8a ) 12.0 Hz, H-1′ax), 3.06 (dddd, 1, J 4a,8a
) 9.9 Hz, J 8,8a ) 3.3 Hz, H-8a), 2.86 (br s, 1, H-8), 2.83 (dd, 1,
J 4a,5 ) 3.9 Hz, H-4a), 1.58 (ddd, 1, J 5.9 ) J 8,9 ) 1.8 Hz, J 9,9′
)
8.5 Hz, H-9), 1.38 (br d, 1, J 5,9′ ∼ J 8,9′ < 1 Hz, H-9′); 13C NMR
(50.3 MHz, CDCl3) δ 207.9 (C-4), 138.3, 134.0 (C-6,7), 137.0,
128.4, 128.1, 127.8 (C-aromatic), 95.8 (C-3), 69.2 (PhCH2O),
64.5 (C-1), 49.2 (C-4a), 48.7 (C-9), 44.1, 43.4, 41.6 (C-5,8,8a).
Anal. Calcd for C17H18O3: C, 75.53; H, 6.71. Found: C, 75.18;
H, 6.68.
(3S,4a R,5S,8R,8a S)-3-Ben zyloxy-4a ,5,8,8a -tetr a h yd r o-
5,8-eth a n o-1H-2-ben zop yr a n -4(3H)-on e (r-En d o-Ad d u ct,
16a ). The major product of the thermal cycloaddition of 8a
with 1,3-cyclohexadiene was 16a (ee > 86%, Rf ) 0.68); [R]D
J . Org. Chem, Vol. 67, No. 22, 2002 7845