2366
K. Kawai et al. / Bioorg. Med. Chem. Lett. 12 (2002) 2363–2366
(m, 2H, OCH2CH2), 6.71 (d, 1H, J=8.4 Hz, naphthalene H3),
Acknowledgements
7.68 (dd, 1H, J=7.3 and 8.6 Hz, naphthalene H6), 7.82 (br,
1H, NHCH3), 8.29 (d, 1H, J=8.4 Hz, naphthalene H2), 8.44
(d, 1H, J=7.3 Hz, naphthalene H5), 8.61 (d, 1H, J=8.6 Hz,
naphthalene H6). 31P NMR (162 MHz, DMSO-d6) d 134.88.
EIMS (positive ion) m/z 446 (M+1).
This work has been partly supported by a Grant-in-Aid
for Scientific Research from Ministry of Education,
Science, Sport and Culture of Japan.
17. Yamana, K.; Zako, H.; Asazuma, K.; Iwase, R.; Nakano,
H.; Murakami, A. Angew. Chem. Int. Ed. 2001, 40, 1104.
18. Yamana, K.; Mitsui, T. Nucleosides Nucleotides 1999, 18,
1565.
References and Notes
1. Mizukoshi, T.; Kodama, T. S.; Fujiwara, Y.; Furuno, T.;
Nakanishi, M.; Iwai, S. Nucleic Acids Res. 2001, 29, 4948.
2. Lorenz, M.; Hillisch, A.; Payet, D.; Buttinelli, M.; Travers,
A.; Diekmann, S. Biochemistry 1999, 38, 12150.
3. Toth, K.; Sauermann, V.; Langowski, J. Biochemistry 1998,
37, 8173.
4. Akiyama, T.; Hogan, M. E. Biochemistry 1997, 36, 2307.
5. Hamad-Schifferli, K.; Schwartz, J. J.; Santos, A. T.; Zhang,
S.; Jacobson, J. M. Nature 2002, 415, 152.
6. Yurke, B.; Turberfield, A. J.; Mills, A. P., Jr.; Simmel,
F. C.; Neumann, J. L. Nature 2000, 406, 605.
7. Mao, C.; Sun, W.; Shen, Z.; Seeman, N. C. Nature 1999,
397, 144.
19. Yamana, K.; Mitsui, T.; Nakano, H. Tetrahedron 1999,
55, 9143.
20. Yamana, K.; Iwase, R.; Furutani, S.; Tsuchida, H.; Zako, H.;
Yamaoka, T.; Murakami, A. Nucleic Acids Res. 1999, 27, 2387.
21. Yamana, K.; Ohashi, Y.; Nunota, K.; Nakano, H. Tetra-
hedron 1997, 53, 4265.
22. 10: 1H NMR (270 MHz, DMSO-d6) d 1.15 (m, 12H,
NH(CH3)2), 3.00 (d, 3H, J=4.1 Hz, NHCH3), 3.26 (m, 7H,
NH(CH3)2, POCH3, H50, H500), 3.70 (s, 6H, PhOCH3), 4.23
(m, 1H, H40), 4.41 (m, 1H, H30) 4.70 (s, 2H, C(O)CH2), 4.74
(m, 1H, H20), 5.45 (d, J=8.1 Hz, 1H, uridine H5), 5.97 (d,
J=8.4 Hz, 1H, H10), 6.72–8.66 (m, 21H, naphthalene, trityl,
uridine H6, NHCH3, C(O)NH), 11.48 (s, 1H, uridine NH). 31
P
8. Grunwell, J. R.; Glass, J. L.; Lacoste, T. D.; Deniz, A. A.;
Chemla, D. S.; Schultz, P. G. J. Am. Chem. Soc. 2001, 123,
4295.
9. Sako, Y.; Minoghchi, S.; Yanagida, T. Nat. Cell. Biol.
2000, 2, 168.
10. Tong, A. K.; Li, Z.; Jones, G. S.; Russo, J. J.; Ju, J. Nat.
Biotech. 2001, 19, 756.
11. Tong, A. K.; Jockusch, S.; Li, Z. M.; Zhu, H. R.; Akins,
D. L.; Turro, N. J.; Ju, J. Y. J. Am. Chem. Soc. 2001, 123,
12923.
NMR (162 MHz, DMSO-d6) d 152.55, 155.65 (diastereomers).
FABMS (positive ion) m/z 973 (M+1).
23. Gasper, S. M.; Schuster, G. B. J. Am. Chem. Soc. 1997,
119, 12762.
24. Grabtchev, I.; Philipova, T.; Meallier, P.; Guittonneau, S.
Dyes Pigments 1996, 31, 31.
25. Pyrene-containing ODNs were synthesized according to
the reported procedure. Yamana, K.; Asazuma, K.; Nakano,
H. Nucleic Acids Res. Symposium Series 1999, 42, 113. Cou-
marin would serves as a much better energy donor for NI. Ref
14 and May, B.; Poteau, X.; Yuan, D. W.; Brown, R. G. Dyes
Pigments 1999, 42, 79.
12. Xu, Y.; Karalkar, N. B.; Kool, E. T. Nat. Biotech. 2001,
19, 148.
13. Kawahara, S.; Uchimaru, T.; Murata, S. Chem. Comm.
1999, 563.
14. Mitsui, T.; Nakano, H.; Yamana, K. Tetrahedron Lett.
2000, 41, 2605.
26. Clegg, R. M. Methods Enzymol. 1992, 211, 353.
27. The ꢁ2 orientation factor can take a value between 0 and
4. Nonlinear fitting of the data in Fig. 2c using Eq. (2) roughly
provides R0 of 15 and 12 A for INIOH/IIPyn and IUNI/IIPyn
,
respectively. This calculated R0 corresponds to ꢁ2 difference
of 50% between these two systems. For a recent detailed dis-
cussion of the effect of ꢁ2 on the FRET efficiency, see ref 28.
28. Widengren, J.; Schweinberger, E.; Berger, S.; Seidel,
C. A. M. J. Phys. Chem. B 2001, 105, 685.
15. Houston, P.; Kodadek, T. Proc. Natl. Acad. Sci. U.S.A.
1994, 91, 5471.
16. 4: 1H NMR (270 MHz, DMSO-d6) d 1.16 (m, 12H,
NH(CH3)2), 1.98 (m, 2H, NCH2CH2), 3.00 (d, 3H, J=4.6 Hz,
NHCH3), 3.40 (m, 7H, NCH2CH2, OCH3, NH(CH3)2), 4.09