derivatives and synthetic equivalents are employed.11 For
example, Shing reported the C-alkylation of Meldrum’s acid
under Mitsunobu conditions.12 Its alkylation works using a
limited range of alcohols, principally, primary allylic or
arylmethyl alcohols, and only dialkylated products are
obtained. Attempts to selectively monoalkylate failed. The
problem of dialkylation is inherent in such reactions and is
seen even in polymer-bound applications, where the reacting
partners are constrained.13
conditions and fluorous-based separations.16 The reaction of
1 was examined under three sets of frequently used Mit-
sunobu conditions (Table 1).
Table 1. The Monoalkylation of Bis(2,2,2-trifluoroethyl)
Malonate (1) under Three Common Mitsunobu Conditions
We were encouraged that, while not suitable for our use,
Meldrum’s acid derivatives were at least sufficiently reactive
to participate in the Mitsunobu reaction. We reasoned that
by appropriate choice of the ester substituent another
malonate derivative with suitable acidity could be found. We
carried out the reaction of diphenyl malonate with allyl
alcohol and obtained a mixture of O- and C-alkylation
products, with the former predominating by about 2:1. The
problem of regiocontrol in the Mitsunobu reaction of
ambident nucleophiles is inherent to such substrates.4,14
We next investigated the reaction of bis(2,2,2-trifluoro-
ethyl) malonate (1), a compound that has been described in
both the open and patent literature for other purposes.15
Fluorine-containing compounds have been used in Mitsunobu
reactions, most frequently as substituents in the alcohol
component or in the development of fluorous reaction
entry
R1OH
methoda
product
yield (%)
1
2
3
4
5
Ph(CH2)3OH
Ph(CH2)3OH
Ph(CH2)3OH
PhCH2OH
A
B
C
A
B
2a
2a
2a
2b
2b
40
84
82
41
63b
PhCH2OH
a Reaction conditions: A mixture of 1 (1.1 equiv), alcohol (1.0 equiv),
phosphine (1.5 equiv), and azo compound (1.5 equiv) in dry toluene at
room temperature. Methods: (A) DEAD-Ph3P; (B) ADDP-Ph3P; and (C)
ADDP-Bu3P. b Bis(2,2,2-trifluoroethyl) dibenzylmalonate was isolated in
27% yield.
Under the original Mitsunobu DEAD-Ph3P conditions,
dehydrative coupling with a simple primary alcohol test
substrate, 3-phenyl-1-propanol, gives the desired C-alkylated
product 2a in 40% yield (Table 1, entry 1). However, using
the 1,1′-(azodicarbonyl)dipiperidine (ADDP)-Ph3P or ADDP-
Bu3P reagents,8 the monoalkylated product 2a was obtained
in greater than 80% yield (Table 1, entries 2 and 3,
respectively). Benzyl alcohol behaves similarly, although the
combination of a more reactive alcohol and the more reactive
ADDP reagent gives a significant amount of the dialkylated
product (27%) in addition to the major monoalkylated
product 2b (63%).
Having identified bis(2,2,2-trifluoroethyl) malonate (1) as
a malonate derivative suitable for use in the ADDP-Ph3P
promoted Mitsunobu reaction, and finding that it reacts via
C-alkylation and can be selectively monoalkylated, other
aspects probing the scope of reaction were investigated. The
starting materials, products, and data obtained are sum-
marized in Table 2. With a limiting amount of allyl alcohol,
the reaction proceeds much like that of benzyl alcohol; the
monoalkylated product 2c is obtained in 60% yield (entry
1). Using an excess of the alcohol and coupling components,
malonate 1 can be efficiently dialkylated. For example, in
the presence of excess allyl alcohol, the dialkylated malonate
3a was formed in 92% yield (entry 2). Similarly, starting
with the monoalkylated malonate 2a, dehydrative alkylation
Chem. 1999, 71, 1053-1057. (e) Kiankarimi, M.; Lowe, R.; McCarthy, J.
R.; Whitten, J. P. Tetrahedron Lett. 1999, 40, 4497-4500. (f) Tsunoda,
T.; Kawamura, Y.; Uemoto, K.; Ito, S. Heterocycles 1998, 47, 177-179.
(g) Kawamura, Y.; Sato, Y.; Horie, T.; Tsukayama, M. Tetrahedron Lett.
1997, 38, 7893-7896. (h) Tsunoda, T.; Ito, S. J. Synth. Org. Chem. Jpn.
1997, 55, 631-641. (i) Tsunoda, T.; Otsuka, J.; Yamamiya, Y.; Ito, S. Chem.
Lett. 1994, 539-542. (j) Tsunoda, T.; Ozaki, F.; Ito, S. Tetrahedron Lett.
1994, 35, 5081-5082.
(8) Tsunoda, T.; Yamamiya, Y.; Ito, S. Tetrahedron Lett. 1993, 34,
1639-1642.
(9) For example: (a) Ryoo, S.-J.; Kim, J.; Kim, J.-S.; Lee, Y.-S. J. Comb.
Chem. 2002, 4, 187-190. (b) Li, Z.; Zhou, Z.; Wang, L.; Zhou, Q.; Tang,
C. Tetrahedron: Asymmetry 2002, 13, 145-148. (c) Chandrasekhar, S.;
Kulkarni, G. Tetrahedron: Asymmetry 2002, 13, 615-619. (d) Charette,
A. B.; Janes, M. K.; Boezio, A. A. J. Org. Chem. 2001, 66, 2178-2180.
(e) Ding, S.; Gray, N. S.; Ding, Q.; Schultz, P. G. J. Org. Chem. 2001, 66,
8273-8276. (f) Viirre, R. D.; Hudson, R. H. E. Org. Lett. 2001, 3, 3931-
3934. (g) Winum, J. Y.; Barragan, V.; Montero, J. L. Tetrahedron Lett.
2001, 42, 601-603.
(10) Tsunoda, T.; Nagaku, M.; Nagino, C.; Kawamura, Y.; Ozaki, F.;
Hioki, H.; Ito, S. Tetrahedron Lett. 1995, 36, 2531-2534.
(11) (a) Macor, J. E.; Wehner, J. M. Tetrahedron Lett. 1991, 32, 7195-
7198. (b) Yu, J. R.; Cho, H. S.; Falck, J. R. J. Org. Chem. 1993, 58, 5892-
5894. (c) Lai, J. Y.; Yu, J. R.; Hawkins, R. D.; Falck, J. R. Tetrahedron
Lett. 1995, 36, 5691-5694. (d) Yu, J. R.; Lai, J. Y.; Falck, J. R. Synlett
1995, 1127-1128. (e) Tsunoda, T.; Nagino, C.; Oguri, M.; Ito, S.
Tetrahedron Lett. 1996, 37, 2459-2462. (f) Cravotto, G.; Glovenzana, G.
B.; Sisti, M.; Palmisano, G. Tetrahedron 1996, 52, 13007-13016. (g)
Tsunoda, T.; Uemoto, K.; Ohtani, T.; Kaku, H.; Ito, S. Tetrahedron Lett.
1999, 40, 7359-7362. (h) Uemoto, K.; Kawahito, A.; Matsushita, N.;
Sakamoto, I.; Kaku, H.; Tsunoda, T. Tetrahedron Lett. 2001, 42, 905-
907.
(12) Shing, T. K. M.; Li, L. H.; Narkunan, K. J. Org. Chem. 1997, 62,
1617-1622.
(13) Chaturvedi, S.; Otteson, K.; Bergot, J. Tetrahedron Lett. 1999, 40,
8205-8209.
(14) (a) Comins, D. L.; Jianhua, G. Tetrahedron Lett. 1994, 35, 2819-
2822. (b) Wang, J.; Gutsche, C. D. Struct. Chem. 2001, 12, 267-274. (c)
Attolini, M.; Boxus, T.; Biltresse, S.; Marchand-Brynaert, J. Tetrahedron
Lett. 2002, 43, 1187-1188.
(15) (a) Mozhaev, V. V.; Budde, C. L.; Rich, J. O.; Usyatinsky, A. Y.;
Michels, P. C.; Khmelnitsky, Y. L.; Clark, D. S.; Dordick, J. S. Tetrahedron
1998, 54, 3971-3982. (b) Lei, Y. X.; Cerioni, G.; Rappoport, Z. J. Org.
Chem. 2001, 66, 8379-8394. (c) Romanovskiy, V. N.; Smirnov, I. V.;
Babain, V. A.; Todd, T. A.; Herbst, R. S.; Law, J. D.; Brewer, K. N. SolVent
Extr. Ion Exch. 2001, 19, 1-21.
(16) (a) Fokina, N. A.; Kornilov, A. M.; Kukhar, V. P. J. Fluorine Chem.
2001, 111, 69-76. (b) Bes, L.; Rousseau, A.; Boutevin, B.; Mercier, R.;
Kerboua, R. Macromol. Chem. Phys. 2001, 202, 2954-2961. (c) Hein, M.;
Miethchen, R. Eur. J. Org. Chem. 1999, 2429-2432. (d) Rabai, J.; Szabo,
D.; Borbas, E. K.; Kovesi, I.; Kovesdi, I.; Csampai, A.; Gomory, A.;
Pashinnik, V. E.; Shermolovich, Y. G. J. Fluorine Chem. 2002, 114, 199-
207. (e) Dandapani, S.; Curran, D. P. Tetrahedron 2002, 58, 3855-3864.
(f) Dobbs, A. P.; McGregor-Johnson, C. Tetrahedron Lett. 2002, 43, 2807-
2810.
3844
Org. Lett., Vol. 4, No. 22, 2002