10.1002/chem.202004568
Chemistry - A European Journal
FULL PAPER
References
indicating that the boronate may also be reduced. While
[Mn(CO)5(S)]+ and [Mn(CO)3(S)3]+ are both cationic MnI species,
the electron-deficiency of the former at Mn will be significant and
potentially important when considering downstream reaction
chemistries.
[1]
[2]
[3]
D. G. Brown, J. Boström, J. Med. Chem. 2016, 59, 4443–4458.
C. Torborg, M. Beller, Adv. Synth. Catal. 2009, 351, 3027–3043.
A. Dumrath, C. Lübbe, M. Beller, in Palladium‑ Catalyzed Coupling
React. (Ed.: Á. Molná), Wiley-VCH Verlag GmbH & Co, Weinheim,
2013, pp. 445–489.
Given the promise of light-induced activation of Mn2(CO)10
in synthetic chemistry,[77] our results taken together are important
in proposing future mechanistic schemes and taking advantage of
the unique reactivity of Mn-carbonyl species. As with C-H bond
activation-functionalization catalytic chemistries, the TRMPS-IR
approach has proven valuable, as an important mechanistic tool,
in mapping out the reactive species that develop from metal
carbonyl complexes such as Mn2(CO)10 and determining their
roles in synthetic chemistry.
[4]
T. Ishiyama, M. Murata, N. Miyaura, J. Org. Chem. 1995, 60, 7508–
7510.
[5]
[6]
J. W. B. Fyfe, A. J. B. Watson, Chem 2017, 3, 31–55.
W. K. Chow, O. Y. Yuen, P. Y. Choy, C. M. So, C. P. Lau, W. T.
Wong, F. Y. Kwong, RSC Adv. 2013, 3, 12518–12539.
L. Xu, G. Wang, S. Zhang, H. Wang, L. Wang, L. Liu, J. Jiao, P. Li,
Tetrahedron 2017, 73, 7123–7157.
P. Gandeepan, T. Müller, D. Zell, G. Cera, S. Warratz, L.
Ackermann, Chem. Rev. 2019, 119, 2192–2452.
M. Jiang, H. Yang, H. Fu, Org. Lett. 2016, 18, 5248–5251.
L. Candish, M. Teders, F. Glorius, J. Am. Chem. Soc. 2017, 139,
7440–7443.
[7]
[8]
[9]
[10]
[11]
[12]
[13]
Y. Xu, X. Yang, H. Fang, J. Org. Chem. 2018, 83, 12831–12837.
D. P. Hari, B. König, Angew. Chem. Int. Ed. 2013, 52, 4734–4743.
M. Majek, A. Jacobi von Wangelin, Acc. Chem. Res. 2016, 49,
2316–2327.
[14]
I. Ghosh, L. Marzo, A. Das, R. Shaikh, B. König, Acc. Chem. Res.
2016, 49, 1566–1577.
[15]
[16]
[17]
F. W. Friese, A. Studer, Chem. Sci. 2019, 10, 8503–8518.
J. Yu, L. Zhang, G. Yan, Adv. Synth. Catal. 2012, 354, 2625–2628.
A. Tlahuext-Aca, M. N. Hopkinson, B. Sahoo, F. Glorius, Chem. Sci.
2016, 7, 89–93.
[18]
M. Majek, F. Filace, A. J. von Wangelin, Beilstein J. Org. Chem.
2014, 10, 981–989.
[19]
[20]
C. Zhu, M. Yamane, Org. Lett. 2012, 14, 4560–4563.
X. Qi, L.-B. Jiang, C. Zhou, J.-B. Peng, X.-F. Wu, ChemistryOpen
2017, 6, 345–349.
[21]
[22]
[23]
G. Iakobson, J. Du, A. M. Z. Slawin, P. Beier, Beilstein J. Org.
Chem. 2015, 11, 1494–1502.
X. Qi, H.-P. Li, J.-B. Peng, X.-F. Wu, Tetrahedron Lett. 2017, 58,
3851–3853.
K. Kubota, Y. Pang, A. Miura, H. Ito, Science 2019, 366, 1500 LP –
1504.
[24]
[25]
J. Zhang, X. Wang, H. Yu, J. Ye, Synlett 2012, 23, 1394–1396.
X. Zhang, Z. Zhang, Y. Xie, Y. Jiang, R. Xu, Y. Luo, C. Tao, J.
Chem. Res. 2018, 42, 481–485.
[26]
[27]
[28]
C.-J. Zhao, D. Xue, Z.-H. Jia, C. Wang, J. Xiao, Synlett 2014, 25,
1577–1584.
F. Mo, Y. Jiang, D. Qiu, Y. Zhang, J. Wang, Angew. Chem. Int. Ed.
2010, 49, 1846–1849.
D. Qiu, L. Jin, Z. Zheng, H. Meng, F. Mo, X. Wang, Y. Zhang, J.
Wang, J. Org. Chem. 2013, 78, 1923–1933.
[29]
[30]
D. Qiu, Y. Zhang, J. Wang, Org. Chem. Front. 2014, 1, 422–425.
S. Ahammed, S. Nandi, D. Kundu, B. C. Ranu, Tetrahedron Lett.
2016, 57, 1551–1554.
[31]
[32]
[33]
Y.-R. Luo, Comprehensive Handbook of Chemical Bond Energies,
CRC Press, Boca Raton, 2007.
H. Liang, Y.-X. Ji, R.-H. Wang, Z.-H. Zhang, B. Zhang, Org. Lett.
2019, 21, 2750–2754.
P. Nuhant, M. S. Oderinde, J. Genovino, A. Juneau, Y. Gagné, C.
Allais, G. M. Chinigo, C. Choi, N. W. Sach, L. Bernier, et al., Angew.
Chem. Int. Ed. 2017, 56, 15309–15313.
Figure 4. Light activation of Mn2(CO)10 at 400 nm: impact of reaction
components on the formation of cationic MnI-carbonyl species generated under
working reaction conditions.
[34]
[35]
[36]
[37]
G. K. Friestad, J. Qin, J. Am. Chem. Soc. 2001, 123, 9922–9923.
G. K. Friestad, A. Ji, Org. Lett. 2008, 10, 2311–2313.
G. K. Friestad, K. Banerjee, Org. Lett. 2009, 11, 1095–1098.
B. C. Gilbert, C. I. Lindsay, P. T. McGrail, A. F. Parsons, D. T. E.
Whittaker, Synth. Commun. 1999, 29, 2711–2718.
N. Huther, P. T. McGrail, A. F. Parsons, Eur. J. Org. Chem. 2004,
2004, 1740–1749.
B. C. Gilbert, W. Kalz, C. I. Lindsay, P. T. McGrail, A. F. Parsons, D.
T. E. Whittaker, J. Chem. Soc. Perkin Trans. 1 2000, 1187–1194.
R. S. Herrick, T. R. Herrinton, H. W. Walker, T. L. Brown,
Organometallics 1985, 4, 42–45.
B. C. Gilbert, W. Kalz, C. I. Lindsay, P. T. T. McGrail, A. F. Parsons,
D. T. E. E. Whittaker, Tetrahedron Lett. 1999, 40, 6095–6098.
Y.-F. Liang, R. Steinbock, L. Yang, L. Ackermann, Angew. Chem.
Int. Ed. 2018, 57, 10625–10629.
L. A. Hammarback, I. P. Clark, I. V Sazanovich, M. Towrie, A.
Robinson, F. Clarke, S. Meyer, I. J. S. Fairlamb, J. M. Lynam, Nat.
Catal. 2018, 1, 830–840.
Acknowledgements
We thank the EPSRC for funding (EP/S009965/1: ‘A Fully-
Automated Robotic System for Intelligent Chemical Reaction
Screening’), in addition, the EPSRC for an iCASE award involving
Syngenta, EP/N509413/1, for funding the PhD studentship to L.
A. H. The STFC (access to the ULTRA facility) is gratefully
acknowledged for funding, equipment and support. We thank
Syngenta and University of York for iCASE funding and
studentship to T. J. B and the University of York for a studentship
to J. B. E.
[38]
[39]
[40]
[41]
[42]
[43]
[44]
[45]
L. A. Hammarback, A. Robinson, J. M. Lynam, I. J. S. Fairlamb,
Chem. Commun. 2019, 55, 3211–3214.
L. A. Hammarback, A. Robinson, J. M. Lynam, I. J. S. Fairlamb, J.
Am. Chem. Soc. 2019, 141, 2316–2328.
Y. Hu, B. Zhou, C. Wang, Acc. Chem. Res. 2018, 51, 816–827.
R. Cano, K. Mackey, G. P. McGlacken, Catal. Sci. Technol. 2018, 8,
1251–1266.
Keywords: Manganese • Photocatalysis • Mechanism •
Radicals • Spectroscopy
[46]
[47]
[48]
Y. Hu, B. Zhou, H. Chen, C. Wang, Angew. Chem. Int. Ed. 2018, 57,
6
This article is protected by copyright. All rights reserved.