820
H. Katayama et al. / Tetrahedron Letters 50 (2009) 818–821
O
O
O
O
GalNAc
NH
GalNAc
NH
2
2
HOObt/DIEA
DMSO
S
H
Contulakin G(1-6)
H
Contulakin G(7-16)
H
Contulakin G
OH
+
OH
COOH
10
11
12
GalNAc
(NH2)2
o
-Phenylenediamine
Acetate buffer
Contulakin G
H
OH
9
Scheme 3.
nology of Japan (No. 20380069). We thank Tokai University for a
Grant-in-Aid for high-technology research and the Japan Society
for the Promotion of Science for a Grant-in-Aid for Creative Scien-
tific Research (No. 17GS0420).
Supplementary data
Supplementary data (experimental procedures and the HPLC
chromatograms after cleavage of peptide 8 from the resin) associ-
ated with this article can be found, in the online version, at
References and notes
1. (a) Hojo, H.; Aimoto, S. Bull. Chem. Soc. Jpn. 1991, 64, 111–117; (b) Aimoto, S.
Biopolymers (Pep. Sci.) 1999, 51, 247–265.
2. (a) Kawakami, T.; Yoshimura, S.; Aimoto, S. Tetrahedron Lett. 1998, 39, 7901–
7904; (b) Hojo, H.; Haginoya, E.; Matsumoto, Y.; Nakahara, Y.; Nabeshima, K.;
Toole, B. P.; Watanabe, Y. Tetrahedron Lett. 2003, 44, 2961–2964; (c) Ozawa, C.;
Hojo, H.; Nakahara, Y.; Katayama, H.; Nabeshima, K.; Akahane, T.; Nakahara, Y.
Tetrahedron 2007, 63, 9685–9690.
3. Katayama, H.; Hojo, H.; Ohira, T.; Nakahara, Y. Tetrahedron Lett. 2008, 49, 5492–
5494.
4. Dixon, H. B. F.; Moret, V. Biochem. J. 1965, 94, 463–469.
5. (a) Dixon, H. B. F.; Fields, R. Methods Enzymol. 1972, 25, 409–419; (b) Wu, P.;
Brand, L. Methods Enzymol. 1997, 278, 321–330; (c) Duan, X.; Zhao, Z.; Ye, J.; Ma,
H.; Xia, A.; Yang, G.; Wang, C.-C. Angew. Chem., Int. Ed. 2004, 43, 4216–4219; (d)
Dong, S.-Y.; Ma, H.-M.; Duan, X.-J.; Chen, X.-Q.; Li, J. J. Proteome Res. 2005, 4,
161–166.
6. (a) Kawakami, T.; Hasegawa, K.; Teruya, K.; Akaji, K.; Horiuchi, M.; Inagaki, F.;
Kurihara, Y.; Uesugi, S.; Aimoto, S. Tetrahedron Lett. 2000, 41, 2625–2628; (b)
Kawakami, T.; Hasegawa, K.; Teruya, K.; Akaji, K.; Horiuchi, M.; Inagaki, F.;
Kurihara, Y.; Uesugi, S.; Aimoto, S. J. Peptide Sci. 2001, 7, 474–487.
7. Tapia, I.; Alcazar, V.; Moran, J. R.; Caballero, C.; Grande, M. Chem. Lett. 1990, 19,
697–700.
Figure 1. RP-HPLC elution profiles. (a) Coupling reaction mixture of 10 and 11 (0 h).
*
(b) Two hours after the reaction. (c) Reaction mixture after deprotection.
,
**
pyruvoyl-deprotected compound of the remaining C-terminal segment 11. , non-
peptidic components. Elution conditions: column, Mightysil RP-18 GP
(4.6 Â 150 mm, Kanto, Japan) at a flow rate of 1 ml/min; eluent, A, 0.1% TFA, B,
acetonitrile containing 0.1% TFA.
8. Analytical data of compound 5: [
a
]
À1.4 (c, 1.0). Rf 0.25 (75:25 toluene/
D
EtOAc). 1H NMR (CDCl3): d 7.76 (d, 2H, J = 7.6 Hz, Ar), d 7.60 (d, 2H, J = 7.2, Ar), d
e
7.39 (t, 2H, J = 7.6, Ar), d 7.31 (t, 2H, J = 7.6, Ar), d 7.03 (br, 1H, N H), d 5.90 (m,
1H, –CH@CH2), d 5.45 (d, 1H, J = 8.4, N H), d 5.33 (d, 1H, J = 16.8, –CH@CH2), d
In our preliminary experiments, pyruvoyl group could be specif-
ically removed from a peptide containing pyruvoyl, Fmoc and azi-
do groups without undesirable side reaction (data not shown).
These results indicated that a site-specific amino group modifica-
tion after peptide condensation reaction came to be possible by
this protecting group.
In conclusion, we have synthesized Fmoc-Lys(Pyv)-OH and have
introduced it into the peptide and the glycopeptide by Fmoc-SPPS.
The pyruvoyl peptide could be used for the peptide condensation
reaction by the thioester method, and the pyruvoyl groups were
easily cleaved without significant side reactions. This protecting
group was stable under both acidic and basic conditions, and was
compatible with acid-labile protecting groups such as benzyl
groups used for the protection of carbohydrate moieties as shown
in this study.
a
5.26 (d, 1H, J = 10.4, –CH@CH2), d 4.64 (d, 2H, J = 5.6, –OCH2–), d 4.41 (m, 3H,
a
e
C H, CH2(Fmoc)), d 4.22 (t, 1H, J = 6.8, CH(Fmoc)), d 3.28 (m, 2H, C H2), d 2.45 (s,
3H, Pyv), d 1.87 (m, 1H, CbH2), d 1.70 (m, 1H, CbH2), d 1.56 (m, 2H, CdH2), d 1.39
c
(m, 2H, C H2).
9. Analytical data of compound 1: [a] +10.7 (c, 0.5). Rf 0.11 (50:50:1 toluene/
D
EtOAc/AcOH). 1H NMR (DMSO-d6): d 7.93 (d, 2H, J = 7.2 Hz, Ar), d 7.77 (d, 2H,
e
J = 7.2, Ar), d 7.59 (s, 1H, N H), d 7.46 (t, 2H, J = 7.6, Ar), d 7.37 (t, 2H, J = 7.6, Ar),
a
d 4.33 (d, 2H, J = 6.4, CH2(Fmoc)), d 4.27 (m, 1H, CH(Fmoc)), d 3.97 (m, 1H, C H),
e
d 3.15 (m, 2H, C H2), d 2.37 (s, 3H, Pyv), d 1.74 (m, 1H, CbH2), d 1.66 (m, 1H,
c
CbH2), d 1.50 (m, 2H, CdH2), d 1.36 (m, 2H, C H2).
10. Yang, W.-J.; Aida, K.; Nagasawa, H. Gen. Comp. Endocrinol. 1999, 114, 415–424.
11. Hojo, H.; Onuma, Y.; Akimoto, Y.; Nakahara, Y.; Nakahara, Y. Tetrahedron Lett.
2007, 48, 25–28.
12. King, D.; Fields, C. G.; Fields, G. B. Int. J. Peptide Protein Res. 1990, 36, 255–266.
13. (a) Chen, G.; Wan, Q.; Tan, Z.; Kan, C.; Hua, Z.; Ranganathan, K.; Danishefsky, S.
Angew. Chem., Int. Ed. 2007, 46, 7383–7387; (b) Hojo, H.; Murasawa, Y.;
Katayama, H.; Ohira, T.; Nakahara, Y.; Nakahara, Y. Org. Biomol. Chem. 2008, 6,
1808–1813.
14. Analytical data of peptide 6: MALDI-TOF mass, found: m/z 1914.3,
calcd: 1914.0 (M+H)+. Amino acid analysis: Asp2.92Thr0.96Ser1.61Glu0.99
Acknowledgements
Pro0.99Gly1Ala0.98Val0.98Met0.79 Ile1.95Leu2.95Lys0.99
.
15. Craig, A. G.; Norberg, T.; Griffin, D.; Hoeger, C.; Akhtar, M.; Schmidt, K.; Low,
W.; Dykert, J.; Richelson, E.; Navarro, V.; Mazella, J.; Watkins, M.; Hillyard, D.;
Imperial, J.; Cruz, L. J.; Olivera, B. M. J. Biol. Chem. 1999, 274, 13752–13759.
This work was partly supported by a Grant-in-Aid for Scientific
Research from the Ministry of Education, Sport, Science and Tech-