A Novel Bis-Thiourea Organocatalyst for the Asymmetric Aza-Henry Reaction
COMMUNICATIONS
[2] a) D. H. Lloyd, D. E. Nichols, J. Org. Chem. 1986, 51,
4294–4295; b) A. G. M. Barrett, C. D. Spilling, Tetrahe-
dron Lett. 1988, 29, 5733–5734; c) A. S. Kende, J. S.
Mendoza, Tetrahedron Lett. 1991, 32, 1699–1702;
d) M. S. Sturgess, D. J. Yarberry, Tetrahedron Lett.
1993, 34, 4743–4746; e) H. Adams, J. C. Anderson, S.
Peace, A. M. K. Pennell, J. Org. Chem. 1998, 63, 9932–
9934.
[3] a) H. W. Pinnick, Org. React. 1990, 38, 655–792; b) C.
Matt, A. Wagner, C. Moiskowski, J. Org. Chem. 1997,
62, 234–235; c) R. Ballini, M. Petrini, Tetrahedron
2004, 60, 1017–1047.
proton of the amine is shifted from 8.88 ppm in the
uncomplexed imine to 8.65 ppm in the presence of
two equivalents of the catalyst. The interpretation of
this shift is not clear at this point and this will be one
of many subjects of future efforts to gain additional
experimental evidence towards the understanding of
the mechanism of this catalyst in the aza-Henry reac-
tion.
Experimental Section
[4] a) K. Yamada, S. J. Harwood, H. Groger, M. Shibasaki,
Angew. Chem. 1999, 111, 3713–3715; Angew. Chem.
Int. Ed. 1999, 38, 3504–3506; b) K. Yamada, G. Moll,
M. Shibasaki, Synlett 2001, 980–982; c) N. Tsuritani, K.
Yamada, N. Yoshikawa, M. Shibasaki, Chem. Lett.
2002, 276–277.
[5] a) K. R. Knudsen, T. Risgaard, N. Nishiwaki, K. V.
Gothelf, K. A. Jørgensen, J. Am. Chem. Soc. 2001, 123,
5843–5844; b) N. Nishiwaki, K. R. Knudsen, K. V.
Gothelf, K. A. Jørgensen, Angew. Chem. 2001, 113,
3080–3083; Angew. Chem. Int. Ed. 2001, 40, 2992–
2995; c) K. R. Knudsen, K. A. Jorgensen, Org. Biomol.
Chem. 2005, 3, 1362–1364.
[6] a) J. C. Anderson, G. P. Howell, R. M. Lawrence, C. S.
Wilson, J. Org. Chem. 2005, 70, 5665–5670; b) F. Gao,
J. Zhu, Y. Tang, M. Deng, C. Qian, Chirality, 2006, 18,
741–745; c) C. Palomo, M. Liarbide, R. Halder, A.
Laso, R. Lopez, Angew. Chem. 2006, 118, 123–126;
Angew. Chem. Int. Ed. 2006, 45, 117–120; d) S. Handa,
V. Gnanadesikan, S. Matsunaga, S. Masakatsu, J. Am.
Chem. Soc. 2007, 129, 4900–4901; e) B. M. Trost, D. W.
Lupton, Org. Lett. 2007, 9, 2023–2026.
General Procedure for the Asymmetric Aza-Henry
Reaction (Table 3)
A
flame-dried round-bottom flask was loaded with
0.2 equiv. of catalyst 12 (0.2 mmol, 160 mg) and 1 equiv. of
imine 14a–j (1 mmol). The solid mixture was dissolved in
4 mLof toluene and then RCH 2NO2 (10 equiv., 0.52 mL)
was added at À358C. After 5 min, Et3N (0.4 equiv., 56 mL)
was added and then the mixture was stirred at À358C for
17–36 h. The volatiles were evaporated and the crude prod-
uct was purified by column chromatography on silica gel
(20% acetone in hexanes) to afford products 16a–l.
For all the optimization studies of the aza-Henry reaction
detailed in Table 1 and Table 2, the experimental procedure
is the same with slight modifications that are indicated in
each Table. Whenever a % conversion is mentioned, this
means the product was not purified, and the % conversion
was determined from the 1H NMR spectrum of the crude re-
action mixture by integration of product peaks versus the
C(=N)H proton of the imine. The only species observed in
1
the crude H NMR spectrum of the crude reaction mixture
was the catalyst, the desired product and the starting imine.
[7] For general reviews on asymmetric organocatalysis,
see: a) P. I. Dalko, L. Moisan, Angew. Chem. 2001, 113,
3840–3864; Angew. Chem. Int. Ed. 2001, 40, 3726–
3748; b) P. I. Dalko, L. Moisan, Angew. Chem. 2004,
116, 5248–5286; Angew. Chem. Int. Ed. 2004, 43, 5138–
5175; c) J. Seayad, B. List, Org. Biomol. Chem. 2005, 3,
719–724.
Supporting Information
Experimental protocols, characterization procedures, spec-
tral data for all compounds and X-ray data for 13 are avail-
able as Supporting Information.
[8] a) T. Okino, S. Nakamura, T. Furukawa, Y. Takemoto,
Org. Lett. 2004, 6, 625–627; b) X. Xu, T. Furukawa, T.
Okino, H. Miyabe, Y. Takemoto, Chem. Eur. J. 2006,
12, 466–476.
[9] T. P. Yoon, E. N. Jacobsen, Angew. Chem. 2005, 117,
470–472; Angew. Chem. Int. Ed. 2005, 44, 466–468.
[10] L. Bernardi, F. Fini, R. P. Herrera, A. Ricci, V. Sgarza-
ni, Tetrahedron 2006, 62, 375–380.
Acknowledgements
This work was supported by a grant from the NIH (GM
63019).
[11] C. M. Bode, A. Ting, S. E. Schaus, Tetrahedron 2006,
62, 11499–11505.
References
[12] a) Y.-W. Chang, J.-J. Yang, J.-N. Dang, Y.-X. Xue, Syn-
lett 2007, 2283–2285; b) M. T. Robak, M. Trincado, J.
A. Elman, J. Am. Chem. Soc. 2007, 129, 15110–15111.
[13] a) F. Fini, V. Sgarzani, D. Pettersen, R. P. Herrera, L.
Bernardi, A. Ricci, Angew. Chem. 2005, 117, 8189–
8192; Angew. Chem. Int. Ed. 2005, 44, 7975–7978;
b) C. Polomo, M. Oiarbide, A. Laso, R. Lopez, J. Am.
Chem. Soc. 2005, 127, 17622–17623.
[1] a) H. H. Baer, L. Urbas, in: The Chemistry of the Nitro
and Nitroso Groups, (Ed.: S. Patai), Interscience, New
York, 1970, Part 2, p 117; b) N. Ono, The Nitro Group
in Organic Synthesis, 1st edn., Wiley, New York, 2001;
c) B. Westermann, Angew. Chem. 2003, 115, 161–163;
Angew. Chem. Int. Ed. 2003, 42, 151–153; d) C.
Palomo, M. Oiarbide, A. Mielgo, Angew. Chem. 2004,
116, 5558–5560; Angew. Chem. Int. Ed. 2004, 43, 5442–
5444; e) J. C. Anderson, A. J. Blake, G. P. Howell, C.
Wilson, J. Org. Chem. 2005, 70, 549–555.
[14] a) B. M. Nugent, R. A. Yoder, J. N. Johnston, J. Am.
Chem. Soc. 2004, 126, 3418–3419; b) A. S. Singh, R. A.
Adv. Synth. Catal. 2008, 350, 1785 – 1790
ꢁ 2008 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
1789