C O M M U N I C A T I O N S
Table 1. Binding Affinity for MOR
reduced binding affinity and selectivity for MOR relative to 2
having the same configuration, presumably owing to their reduced
conformational preorganization. Isomerization of the central CdC
bond from trans (2) to cis (9) resulted in a significant loss of binding
affinity.
Ki MOR (nM)a,b
1.2
± 0.1
1
Configuration:
S,S,S,R
S,S,R,R
S,R,R,R
S,R,S,R
S,S,R,S
To investigate the role of the C-terminal Phe in MOR binding
of 2, three stereoisomers of 10-12 and one stereoisomer of 13
were synthesized and screened for MOR affinity and selectivity
(Scheme 2). Monomers 3 and 7 were coupled by solution phase
cross metathesis,8 followed by hydrolysis of the thioester, amidation,
and deprotection. Analogues 10 and 11 contain only one amide
bond, yet had similar or higher affinity and selectivity for MOR
than 2. For example, (S,S,S,R)-11 had a Ki value for MOR of 10
nM, and 110- and 600-fold selectivity for MOR over DOR and
KOR, respectively. Compounds 12 and 13 also retained significant
MOR affinity and selectivity, indicating that C-terminal modifica-
tions are well tolerated.
2
6
8.8 ( 0.7
98 ( 31
370 ( 150
21 ( 1
25 ( 5
95 ( 61
74 ( 12
29 ( 8
16 ( 1
22 ( 4
67 ( 38
120 ( 30
400 ( 110
53 ( 6
160 ( 40
190 ( 20
260 ( 70
79 ( 23
9
10
11
12
13
10 ( 2
28 ( 5
20 ( 1
37 ( 8
37 ( 1
a Competitive binding assay with 3H-DAMGO for hMOR-1 stably
transfected into CHO cells. b Errors represent 95% confidence interval.
Table 2. Selectivity of Ligands for MOR versus DOR and KOR
Ki DORa/Ki MOR, Ki KORb/Ki MOR
10 000, 9000
Configuration:
1
In conclusion, screening of an exhaustively stereodiversified
library has resulted in the identification of novel, nonpeptidic ligands
for the MOR. The best of these ligands, (S,S,S,R)-2, -10, and -11,
bind MOR with low nanomolar affinity and 57-600-fold selectivity
for MOR over other opioid receptors. Functional assays show that
these compounds are partial agonists for MOR (data not shown),
and we are currently searching for derivatives showing full agonist
activity. The results provide encouraging signs that stereochemical
diversity will be a valuable strategy for the discovery of nonpeptidic
ligands for peptide receptors.
S,S,S,R
S,S,R,R
S,R,R,R
S,R,S,R
S,S,R,S
2
6
57, 150
22, 40
6, 16
45, 48
31, 8
58, 22
42, 120
39, 180
28, 35
21, 18
26, 13
23, 15
55, 53
34, 120
15, 26
5, 18
21, 35
39, 7
86, 16
9
10
11
12
13
170, 86
110, 600
34, 53
24, 160
a Competitive binding assay with H-DPDPE for hDOR-1 stably trans-
fected into HEK-293 cells. b Competitive binding assay with 3H-U-69 593
for KOR in guinea pig cerebellum preparation.
3
Scheme 2 a
Acknowledgment. We thank G. Warner and Enanta Pharma-
ceuticals for running the initial screens, A. Marcus for help in
preparing 3 and 4, and L. Mahurter for technical assistance.
Supporting Information Available: Experimental procedures and
spectral data for all new compounds (PDF). This material is available
References
(1) (a) Mitchison, T. J. Chem. Biol. 1994, 1, 3-6. (b) Schreiber, S. L. Bioorg.
Med. Chem. 1998, 6, 1127-1152.
(2) (a) Schreiber, S. L. Science 2000, 287, 1964-1969. (b) Stockwell, B. R.
Nat. ReV. Genet. 2000, 1, 116-125.
(3) For examples, see: (a) Nicolaou, K. C.; Pfefferkorn, J. A.; Mitchell, H.
J.; Roecker, A. J.; Barluenga, S.; Cao, G.-Q.; Affleck, R. L.; Lillig, J. E.
J. Am. Chem. Soc. 2000, 122, 9954-9967. (b) Tan, D. S.; Foley, M. A.;
Shair, M. D.; Schreiber, S. L. J. Am. Chem. Soc. 1998, 120, 8565-8566.
(c) Bunin, B. A.; Plunkett, M. J.; Ellman, J. A.; Bray, A. M. New J. Chem.
1997, 21, 125-130.
(4) (a) Gierasch, T. M.; Chytil, M.; Didiuk, M. T.; Park, J. Y.; Urban, J. J.;
Nolan, S. P.; Verdine, G. L. Org. Lett. 2000, 2, 3999-4002. (b) Harrison,
B. A.; Verdine, G. L. Org. Lett. 2001, 3, 2157-2159. (c) Annis, D. A.;
Helluin, O.; Jacobsen, E. N. Angew. Chem., Int. Ed. 1998, 37, 1907-
1909. (d) Paterson, I.; Scott, J. P. J. Chem. Soc., Perkins Trans. 1 1999,
1003-1014. (e) Paterson, I.; Channon, J. A. Tetrahedron Lett. 1992, 33,
797-800.
(5) (a) Dooley, C. T.; Houghten, R. A. Biopolymers 1999, 51, 379-390. (b)
Hruby, V. J.; Agnes, R. S. Biopolymers 1999, 51, 391-410.
(6) (a) Standifer, K. M.; Pasternak, G. W. Cell Signalling 1997, 9, 237-248.
(b) Pasternak, G. W. Life Sci. 2001, 68, 2213-2219.
(7) (a) Zadina, J. E.; Hackler, L.; Ge, L.-J.; Kastin, A. J. Nature 1997, 386,
499-502. (b) Zadina, J. E.; Martin-Schild, S.; Gerall, A. A.; Kastin, A.
J.; Hackler, L.; Ge, L.-J.; Zhang, X. Ann. N.Y. Acad. Sci. 1999, 897, 136-
144.
a Reagents and conditions: (a) SiMe2Cl2, pyridine, 60%; (b) Cl2(PCy3)-
(IMesH2)RuCHPh, toluene, 95 °C, 89%; (c) HF‚pyridine, THF, 0 °C, 85%;
(d)LiOH,H2O2,THF,H2O,100%;(e)SPPS,66%;(f)Cl2(PCy3)(IMesH2)RuCHPh,
CH2Cl2, 40 °C; (g) LiOH, H2O2, THF, H2O, 44% for two steps; (h) EDCI,
HOBT, TEA, DMF, RNH2; (i) TFA, CH2Cl2.
(S,S,R,S)-2, with the unnatural configuration at the benzyl side chain,
had the highest MOR over DOR selectivity (86-fold).
(8) (a) Kingsbury, C. L.; Mehrman, S. J.; Takacs, J. M. Curr. Org. Chem.
1999, 3, 497-555. (b) Fu¨rstner, A. Angew. Chem., Int. Ed. 2000, 39,
3012-3043. (c) Blackwell, H. E.; O’Leary, D. J.; Chatterjee, A. K.;
Washenfelder, R. A.; Bussmann, D. A.; Grubbs, R. H. J. Am. Chem. Soc.
2000, 122, 58-71.
To investigate the role of the olefin in MOR binding, four
stereoisomers of reduced olefin ligands 6 (Scheme 1) and four
stereoisomers of cis-configurated olefin ligands 9 (Scheme 2) were
synthesized and assayed for MOR affinity and selectivity. Com-
pounds 6 were prepared by hydrogenation of 5 on the solid phase
using TPSH,12 followed by deprotection, and ligands 9 were
prepared by our previously reported solution phase, silyl-tethered
ring-closing metathesis method. Ligands 6 generally exhibited
(9) Scholl, M.; Ding, S.; Lee, C. W.; Grubbs, R. H. Org. Lett. 1999, 1, 953-
956.
(10) Pasternak, G. W. Mod. Methods Pharmacol. 1990, 6, 1-17.
(11) All configurations are given in the C2 f C8 direction.
(12) (a) Cusack, N. J.; Reese, C. B.; Risius, A. C.; Roozpeikar, B. Tetrahedron
1976, 32, 2157-2162. (b) Lacombe, P.; Castagner, Y. G.; Ruel, R.
Tetrahedron Lett. 1998, 39, 6785-6786.
JA027150P
9
J. AM. CHEM. SOC. VOL. 124, NO. 45, 2002 13353