7940
K. Iwasaki et al. / Tetrahedron Letters 43 (2002) 7937–7940
2. It is reported that 1 exhibits Ras farnesyltransferase and
hedron Lett. 1977, 505–508; (e) Ireland, R. E.; Baldwin, S.
W.; Welch, S. C. J. Am. Chem. Soc. 1973, 94, 2056–2066.
9. Hagiwara, H.; Uda, H. J. Org. Chem. 1987, 53, 2308–
2311.
10. (a) Vishwakarma, L. C.; Stringer, O. D.; Davis, F. A.
Org. Synth. 1988, 66, 203–210; (b) Davis, F. A.; Vish-
wakarma, L. C.; Billmers, J. M.; Finn, J. J. Org. Chem.
1984, 49, 3241–3243.
11. The high stereoselectivity observed for the a-hydroxyla-
tion of the ketone 5 leading to the a-hydroxyketone 6 can
be accounted for by the assumption that the oxidizing
reagent approaches from the less hindered a-face of the
enolate generated from 5 under the influence of the axial
juncture methyl group.
12. (a) Dess, D. B.; Martin, J. C. J. Org. Chem. 1983, 48,
4155–4156; (b) Dess, D. B.; Martin, J. C. J. Am. Chem.
Soc. 1991, 113, 7277–7287; (c) Ireland, R. E.; Liu, L. J.
Org. Chem. 1993, 58, 2899.
protein geranyl-geranyltransferase with IC50 values of 13
mM and >100 mM, respectively (Ref. 1).
3. For recent excellent reviews on Ras farnesyltransferase as
a novel cancer therapeutic target, see: (a) Nammi, S.;
Lodagala, D. S. Acta Pharmacol. Sin. 2000, 21, 396–404;
(b) End, D. W. Invest. New Drugs 1999, 17, 241–258; (c)
Leonard, D. M.; Sebolt-Leopold, J. S. Drugs Future 1999,
24, 1099–1106; (d) Qian, Y.; Sebti, S. M.; Hamilton, A.
D. Biopolymers 1997, 43, 25–41; (e) Sugita, K.; Ohtani,
M. Curr. Pharm. Des. 1997, 3, 323–334; (f) Leonard, D.
M. J. Med. Chem. 1997, 40, 2971–2990.
4. The absolute configuration of 1 has not been discussed in
the literature (Ref. 1).
5. Recently, Jarvis et al. reported the isolation of struc-
turally closely related antibiotic, memnobotrin A, from
Memnoniella echinata organism, in which the g-lactone
ring (E ring) in 1 is only replaced by a g-lactam ring, see:
Hinkley, S. F.; Fettinger, J. C.; Dudley, K.; Jarvis, B. B.
J. Antibiot. 1999, 52, 988–997.
13. Kiehlmann, E; Lauener, R. W. Can. J. Chem. 1989, 67,
335–344.
6. Synthetic studies including total synthesis of structurally
analogous sesquiterpenoids, such as hongoquercins A
and B, puupephenone and its analogues, and UPA0043
and UPA0044, have been reported. See for hongo-
quercins A and B: (a) Tsujimori, H.; Bando, M.; Mori,
K. Eur. J. Org. Chem. 2000, 297–302; (b) Tsujimori, H.;
Mori, K. Biosci. Biotechnol. Biochem. 2000, 64, 1410–
1415. See for puupephenone and its analogues: (c) Maiti,
S.; Sengupta, S.; Giri, C.; Achari, B.; Banerjee, A. K.
Tetrahedron Lett. 2001, 42, 2389–2391; (d) Barrero, A. F.;
Alvarez-Manzaneda, E. J.; Chahboun, R.; Corte´s, M.;
Armstrong, V. Tetrahedron 1999, 55, 15181–15208; (e)
Barrero, A. F.; Alvarez-Manzaneda, E. J.; Herrador, M.
M.; Chahboun, R.; Galera, P. Bioorg. Med. Chem. Lett.
1999, 9, 2325–2328; (f) Arjona, O.; Garranzo, M.;
Mahugo, J.; Maroto, E.; Plumet, J.; Sa´ez, B. Tetrahedron
Lett. 1997, 38, 7249–7252; (g) Barrero, A. F.; Alvarez-
Manzaneda, E. J.; Chahboun, R. Tetrahedron Lett. 1997,
38, 2325–2328. See for UPA0043 and UPA0044: (h)
Takao, K.; Sasaki, T.; Kozaki, T.; Yanagisawa, Y.;
Tadano, K.; Kawashima, A.; Shinonaga, H. Org. Lett.
2001, 3, 4291–4294.
7. For a review, see: Lee, V. J. In Comprehensive Organic
Synthesis; Trost, B. M.; Fleming, I., Eds. Conjugate
Additions of Reactive Carbanions to Activated Alkenes
and Alkynes; Pergamon Press: Oxford, 1991; Vol. 4, pp.
69–138.
8. While related conjugate addition reactions have been
previously described in the literature, to our knowledge,
the conjugate addition reaction between 10 and the Grig-
nard reagent prepared from sterically hindered ortho-di-
substituted bromobenzene derivative such as 14 is
unprecedented, see: (a) Pemp, A.; Seifert, K. Tetrahedron
Lett. 1997, 38, 2081–2084; (b) Mori, K.; Komatsu, M.
Bull. Soc. Chim. Belg. 1986, 95, 771–781; (c) Welch, S. C.;
Prakasa Rao, A. S. C. J. Org. Chem. 1978, 43, 1957–
1961; (d) Welch, S. C.; Prakasa Rao, A. S. C. Tetra-
14. In general, the addition reaction of Grignard reagents to
a,b-unsaturated ketones in the absence of copper salts
affords 1,2-addition products. However, in this case the
1,4-addition product 15 was only obtained, and this is
probably due to severe 1,3-diaxial interactions between
the axial juncture methyl group in 10 and the incoming
Grignard reagent of 14.
15. When the phenol derivative 17 was subjected to acid-
mediated cyclization reaction (e.g. BF3·Et2O/CH2Cl2/−
60°Crt), the undesired C-7 epimer of 19 was exclusively
produced in 86% yield. This stereochemical outcome can
be rationalized by considering that the inner phenolic
hydroxy group attacks the C-7 tertiary carbocation, in
situ generated by acid treatment, from the less hindered
a-face of the molecule under the influence of the b-ori-
ented axial methyl group at the decalin junction.
16. (a) Germay, O.; Kumar, N.; Thomas, E. J. Tetrahedron
Lett. 2001, 42, 4969–4974; (b) Nicolaou, K. C.; Petasis,
N. A.; Claremon, D. A. Tetrahedron 1985, 41, 4835–4841;
(c) Ley, S. V.; Murray, P. J. J. Chem. Soc., Chem.
Commun. 1982, 1252–1253.
1
17. Spectral data for 2: H NMR (500 MHz, CDCl3): l 6.92
(1H, t, J=8.0 Hz), 6.37 (1H, d, J=8.0 Hz), 6.30 (1H, dd,
J=0.8, 8.0 Hz), 4.77 (1H, s), 4.50 (1H, dd, J=4.7, 11.7
Hz), 2.72(1H, d, J=17.9 Hz), 2.66 (1H, dd, J=7.5, 17.9
Hz), 2.12–2.21 (1H, m), 2.05 (3H, s), 1.91 (1H, dt, J=3.5,
13.2 Hz), 1.49–1.77 (5H, m), 1.38 (1H, d, J=7.5 Hz), 1.18
(3H, s), 1.09–1.21 (1H, m), 0.97–1.03 (1H, m), 0.90 (3H,
s), 0.86 (3H, s), 0.74 (3H, s); 13C NMR (125 MHz,
CDCl3): l 171.4, 155.8, 153.5, 126.6, 109.8, 109.5, 106.2,
81.1, 75.0, 54.4, 48.7, 40.5, 38.0, 37.8, 37.7, 28.4, 26.8,
23.4, 21.3, 17.8, 17.4, 16.8, 14.2; IR (KBr): 3447, 2946,
2361, 1699, 1616, 1595, 1468, 1377, 1277, 1169, 1136,
1084, 1030, 972, 905, 777, 561 cm−1; EI-MS (m/z): 372
(M+).