J. N. Kim et al. / Tetrahedron Letters 43 (2002) 6209–6211
6211
COOEt
COOEt
PhI(OAc)2
- AcOH
I2
heating
2
Ts
N
Ts
N
H
H
I
I
AcO
Ph
COOEt
Ts
COOEt
- e, -H+
- TsH
4
5
H
N
N
H
Ts
Scheme 3.
sumably due to the unfavorable steric hindrance during
the radical cyclization stage.
Sakurai, H.; Oka, S. J. Am. Chem. Soc. 1994, 116, 3684.
4. Lee, H. J.; Kim, H. S.; Kim, J. N. Tetrahedron Lett. 1999,
40, 4363.
In conclusion we disclosed herein the facile synthesis of
ethyl 3-quinolinecarboxylates from the Baylis–Hillman
acetates via the oxidative cyclization reaction of N-
tosylamidyl radical as the key step.
5. The compounds 4a, 5a and 5c were reported in our
previous paper.1 Other products were also easily character-
1
ized by their H and 13C NMR spectrum. As an example,
typical procedure for the synthesis of 5e is as follows. To
a stirred solution of 1e (317 mg, 1.0 mmol) and p-toluene-
sulfomamide (855 mg, 5.0 mmol) in DMF (5 mL) was
added K2CO3 (690 mg, 5.0 mmol) and stirred at 40–50°C
for 3 h. After the usual workup process and column
chromatographic purification (hexanes/ether, 1:2), pure 2e
was obtained as a white solid, 262 mg (61%): mp 94–96°C;
1H NMR (CDCl3) l 1.32 (t, J=7.1 Hz, 3H), 2.43 (s, 3H),
3.78 (d, J=6.7 Hz, 2H), 4.24 (q, J=7.1 Hz, 2H), 5.25 (brs,
1H), 7.26–7.78 (m, 8H); 13C NMR (CDCl3) l 14.16, 21.54,
40.74, 61.67, 127.18, 127.51, 129.03, 129.54, 129.76, 131.01,
131.56, 134.83, 135.95, 136.22, 138.77, 143.66, 166.58. A
stirred mixture of 2e (128 mg, 0.3 mmol), iodobenzene
diacetate (155 mg, 0.48 mmol) and iodine (77 mg, 0.3
mmol) in dichloroethane (5 mL) was heated to 60–70°C
during 2 h. After usual aqueous workup process the
obtained crude mixture of 4e and 5e was dissolved in
DMF. To the solution K2CO3 (166 mg, 1.2 mmol) was
added and the reaction mixture was heated to 120–130°C
for 4 h. After usual workup process and column chro-
matographic purification (hexanes/ether, 1:4) pure 5e was
obtained as a white solid, 65 mg (80%): mp 128–129°C; IR
Acknowledgements
This work was supported by the grant (No. R02-2000-
00074) from the Basic Research Program of the Korea
Science and Engineering Foundation.
References
1. (a) Kim, J. N.; Lee, H. J.; Lee, K. Y.; Kim, H. S.
Tetrahedron Lett. 2001, 42, 3737; (b) Chung, Y. M.; Lee,
H. J.; Hwang, S. S.; Kim, J. N. Bull. Korean Chem. Soc.
2001, 22, 799.
2. (a) Togo, H.; Hoshina, Y.; Yokoyama, M. Tetrahedron
Lett. 1996, 37, 6129; (b) Togo, H.; Hoshina, Y.; Muraki,
T.; Nakayama, H.; Yokoyama, M. J. Org. Chem. 1998, 63,
5193; (c) Togo, H.; Katohgi, M.; Yokoyama, M. Synlett
1998, 131; (d) Tsuritani, T.; Shinokubo, H.; Oshima, K.
Org. Lett. 2001, 3, 2709; (e) Togo, H.; Harada, Y.;
Yokoyama, M. J. Org. Chem. 2000, 65, 926; (f) Togo, H.;
Katohgi, M. Synlett 2001, 565 and references cited therein.
3. (a) Togo, H.; Muraki, T.; Hoshina, Y.; Yamaguchi, K.;
Yokoyama, M. J. Chem. Soc., Perkin Trans. 1 1997, 787;
(b) Togo, H.; Muraki, T.; Yokoyama, M. Tetrahedron
Lett. 1995, 36, 7089; (c) Muraki, T.; Togo, H.; Yokoyama,
M. Tetrahedron Lett. 1996, 37, 2441; (d) Kita, Y.; Tohma,
H.; Hatanaka, K.; Takada, T.; Fujita, S.; Mitoh, S.;
(KBr) 1709, 1264 cm−1 1H NMR (CDCl3) l 1.49 (t,
;
J=7.1 Hz, 3H), 4.51 (q, J=7.1 Hz, 2H), 7.67 (d, J=2.0
Hz, 1H), 8.06 (m, 1H), 9.13 (m, 1H), 9.46 (d, J=2.0 Hz,
1H); 13C NMR (CDCl3) l 13.32, 60.88, 122.78, 123.14,
126.78, 127.27, 132.52, 134.25, 136.11, 149.28, 150.75,
163.66; Mass (70 eV) m/z (rel. intensity) 161 (18), 196 (53),
198 (34), 224 (100), 226 (63), 241 (51), 243 (33), 269 (M+,
55), 271 (M++2, 34).