4376 J. Phys. Chem. B, Vol. 106, No. 17, 2002
Tian et al.
(12) Zu, Y. Z.; Shi, R. F.; Garito, A. F.; Grossman, C. H. Opt. Lett.
1994, 19, 786.
(13) Andrews, J. H.; Khaydarov, J. D. V.; Singer, K. D. Opt. Lett. 1994,
properties. The behaviors of their Langmuir films at the air-
water interface demonstrate that the longer straight N-alkyl chain
has a larger steric hindrance than the shorter one, and the
branched N-alkyl chains such as sec-butyls and isobutyls possess
even larger steric hindrance than the straight ones. It is also
manifested that the intermolecular hydrogen bonding between
the aromatic hydroxyls favors the formation of SQ(OH)4
H-aggregates at the air-water interface. However, the branching
of N-alkyl chains greatly suppresses the formation of H-
aggregates and facilitates the formation of J-aggregates in the
Langmuir films, owing to the strong steric hindrance of the
bulky branched N-alkyls. The evaluation of the monolayers at
the air-water interface proved effective in assessing intermo-
lecular interactions, especially intermolecular steric hindrance.
Moreover, from investigations of dyes 1-7 by DTA and TG,
as well as by heating under vacuum, we demonstrated that the
four hydroxyls at the 2′,6′-positions of the two phenyl rings
enhanced the thermal stability and the sublimation ability of an
anilino SQ dye molecule much more significantly than the two
hydroxyls at the same 2′-positions, and the introduction of
branched N-butyls further lowered the sublimation temperatures
of the target SQ(OH)4 molecules. It was also clarified that the
intramolecular hydrogen bonding between the hydroxyls and
the centric CO groups, and the branching of N-alkyl chains can
greatly enhance the sublimation ability of the corresponding SQ-
(OH)4 molecules, whereas the intermolecular hydrogen bonding
between the hydroxyls should be suppressed to improve their
sublimation ability. In particular, dye 4, which has four N-iso-
butyls, exhibited excellent sublimation ability and could be
sublimed without any decomposition. Furthermore, pure SQ dye
thin films that have been obtained only by solution coating so
far were successfully fabricated by molecular beam deposition
of dye 4. Similar to the behavior in the Langmuir films at the
air-water interface, not H-aggregates but J-like aggregates were
formed in the MBD thin films of dye 4. Such thin films of SQ
dyes may find technological applications in many areas such
as electrophotography, solar energy conversion, optical record-
ing, and nonlinear optics.
19, 984.
(14) Dirk, C. W.; Herndon, W. C.; Cervantes-Lee, F.; Selnau, H.;
Martinez, S.; Kalamegham, P.; Tan, A.; Campos, G.; Velez, M.; Zyss, J.;
Ledoux, I.; Cheng, L.-T. J. Am. Chem. Soc. 1995, 117, 2214.
(15) Ashwell, G. J.; Jefferies, G.; Hamilton, D. G.; Lynch, D. E.; Roberts,
M. P. S.; Bahra, G. S.; Brown, C. R. Nature 1995, 375, 385.
(16) Ashwell, G. J. AdV. Mater. 1996, 8, 248.
(17) Furuki, M.; Pu, L. S.; Sasaki, F.; Kobayashi, S.; Tani, T. Appl.
Phys. Lett. 1998, 21, 2648.
(18) Mori, T.; Miyachi, K.; Kichimi, T.; Mizutani, T. Jpn. J. Appl. Phys.
1994, 33, 6594.
(19) Zhang, B.; Zhao, W.; Cao, Y.; Wang, X.; Zhang, Z.; Jiang, X.;
Xu, S. Synth. Met. 1997, 91, 237.
(20) Swalen, J. D.; Tacke, M.; Santo, R.; Rieckhoff, K. E.; Fisher, J.
HelV. Chem. Acta 1978, 61, 960.
(21) Kawabata, Y.; Sekiguti, T.; Tanaka, T.; Nakamura, T.; Koizumi,
H.; Honda, K.; Manda, E.; Saito, M.; Sugi, M.; Iizima, S. J. Am. Chem.
Soc. 1985, 107, 5270.
(22) Kim, S.; Furuki, M.; Pu, L. S.; Nakahara, H.; Fukuda, K. J. Chem.
Soc., Chem. Commun. 1987, 1201.
(23) Kim, S.; Furuki, M.; Pu, L. S.; Nakahara, H.; Fukuda, K. Thin
Solid Films 1988, 159, 1201.
(24) Law, K. Y.; Chen, C. C. J. Phys. Chem. 1989, 93, 2533.
(25) Liang, K.; Law, K. Y.; Whitten, D. G. J. Phys. Chem. 1994, 98,
13379.
(26) Ashwell, G. J.; Wong, G. M. S.; Bucknall, D. G.; Bahra, G. S.;
Brown, C. R. Langmuir 1997, 13, 1629.
(27) Ashwell, G. J.; Jefferies, G.; Rees, N. D.; Williamson, P. C.; Bahra,
G. S.; Brown, C. R. Langmuir 1998, 14, 2850.
(28) Loutfy, R. O.; Hsiao, C. K.; Kazmaier, P. M. Photogr. Sci. Eng.
1983, 27, 5.
(29) DiPaola-Baranyi, G.; Hsiao, C. K.; Kazmaier, P. M.; Burt, R.;
Loutfy, R. O.; Martin, T. I. J. Imaging Sci. 1988, 32, 60.
(30) Law, K. Y. J. Imaging Sci. 1990, 34, 38.
(31) Tatsuura, S.; Furuki, M.; Tian, M.; Sato, Y.; Pu, L. S. Mater. Res.
Soc. Symp. Proc. 1999, 561, 105.
(32) Tatsuura, S.; Tian, M.; Furuki, M.; Sato, Y.; Pu, L. S.; Wada, O.
Jpn. J. Appl. Phys. 2000, 39, 4782.
(33) Baranyi, G.; Burt, R. A.; Hsiao, C. K.; Kazmaier, P. M.; Carmichael,
K. M.; Horgan, A. M. U. S. Patent 4,471,041, 1984.
(34) Kazmaier, P. M.; Burt, R.; DiPaola-Baranyi, G.; Hsiao, C. K.;
Loutfy, R. O.; Martin, T. I.; Hamer, G. K.; Bluhm, T. L.; Taylor, M. G. J.
Imaging Sci. 1988, 32, 1.
(35) Garvey, D. W.; Zimmerman, K.; Young, P.; Tostenrude, J.;
Townsend, J. S.; Zhou, Z.; Lobel, M.; Dayton, M.; Wittorf, R.; Kuzyk, M.
G.; Sounick, J.; Dirk, C. W. J. Opt. Soc. Am. B 1996, 13, 2017.
(36) Mathis, K. S.; Kuzyk, M. G.; Dirk, C. W.; Tan, A.; Martinez, S.;
Gampos, G. J. Opt. Soc. Am. B 1998, 15, 871.
Acknowledgment. The New Energy and Industrial Technol-
ogy Development Organization (NEDO) supported this work
within the framework of the Femtosecond Technology Research
Project.
(37) Kuzyk, M. G.; Garvey, D. W.; Vigil, S. R.; Welker, D. J. Chem.
Phys. 1999, 245, 533.
(38) Ashwell, G. J.; Williamson, P. C.; Green, A.; Bahra, G. S.; Brown,
C. R. Aust. J. Chem. 1998, 51, 599.
(39) Zhong, T. X.; Workman, R. K.; Yao, X.; Jabbour, G. E.; Peterson,
C. A.; Sarid, D.; Dirk, C. W.; de la Cruz, D.; Nagarur, A. Thin Solid Films
1998, 315, 294.
(40) Yang, M.; Jian, Y. Phys. Chem. Chem. Phys. 2001, 3, 4213.
(41) Kruhlak, R. J.; Young, J.; Kuzyk, M. G. Proc. SPIE-Int. Soc. Opt.
Eng. 1997, 3147, 118.
References and Notes
(1) Meiz, R. J.; Champ, R. B.; Chang, L. S.; Chiou, C.; Keller, G. S.;
Liclian, L. C.; Neiman, R. B.; Shattuck, M. D.; Weiche, W. J. Photogr.
Sci. Eng. 1977, 21, 73.
(2) Tam, A. C. Appl. Phys. Lett. 1980, 37, 979.
(3) Law, K. Y. Chem. ReV. 1993, 93, 449.
(4) Merritt, V. Y.; Hovel, H. J. Appl. Phys. Lett. 1976, 29, 414.
(5) Merritt, V. Y. IBM J. Res. DeV. 1978, 22, 353.
(6) Musser, M. E.; Dahlberg, S. C. Appl. Surface Sci. 1980, 5, 28.
(7) Yamin, P.; Piechowski, A. P.; Bird, G. R.; Morel, D. L. J. Phys.
Chem. 1982, 86, 3796.
(8) Jipson, V. B.; Jones, C. R. IBM Technol. Disclosure Bull. 1981,
24, 298.
(9) Gravesteijn, D. J.; Steenbergen, C.; van der Ween, J. Proc. SPIE-
Int. Soc. Opt. Eng. 1983, 420, 327.
(42) Kruhlak, R. J.; Kuzyk, M. G. Proc. SPIE-Int. Soc. Opt. Eng. 1998,
3473, 57.
(43) Kruhlak, R. J.; Kuzyk, M. G. J. Opt. Soc. Am. B 1999, 16, 1749.
(44) Kruhlak, R. J.; Kuzyk, M. G. J. Opt. Soc. Am. B 1999, 16, 1756.
(45) Garvey, D. W.; Kuzyk, M. G. Proc. SPIE-Int. Soc. Opt. Eng. 1999,
3796, 13.
(46) Ashwell, G. J. J. Mater. Chem. 1998, 8, 373.
(47) Meier, H.; Petermann, R.; Gerold, J. Chem. Commun. 1999, 977.
(48) Sprenger, H. E.; Ziegenbein, W. Angew. Chem., Int. Ed. Engl. 1966,
5, 894.
(49) McRae, E. G.; Kasha, M. J. Chem. Phys. 1958, 28, 721.
(50) Law, K. Y. J. Phys. Chem. 1987, 91, 5184.
(10) Sporer, A. H. Appl. Optics 1984, 23, 2738.
(11) Dirk, C. W.; Kuzyk, M. G. Chem. Mater. 1990, 2, 4.