PAPER
Asymmetric Synthesis of Monoprotected Double Allylic Alcohols
1573
Elemental analyses were obtained from a Heraeus CHNORapid El-
ementar Vario EL element analyzer. Melting points were measured
on a Büchi 510 apparatus and are uncorrected. Mass spectra: Finni-
gan SSQ7000 or Finnigan MAT 95 (CI 100 eV, EI 70 eV). IR spec-
tra: Perkin-Elmer FT/IR 1760 (measured in CHCl3; all solid
samples as KBr). 1H NMR spectra (300 MHz, 400 MHz), 13C NMR
(75 MHz, 100 MHz): Varian Gemini 300, Mercury 300, Inova 400
(solvent: CDCl3, TMS as internal standard). Enantiomeric excesses
were determined by gas chromatography on chiral stationary phase
(Siemens Sichromat; CP Chirasildex CB; 0.25 mm 25 m).
by syringe at –78 °C. After stirring for 2 h at this temperature, the
mixture was cooled to –100 °C and the electrophile (11 mmol), dis-
solved in anhyd THF (2 mL), was added slowly. After further stir-
ring for 2 h at –100 °C, the mixture was allowed to warm to r.t. over
15 h. The mixture was quenched with pH 7 buffer solution (2 mL)
and diluted with Et2O (80 mL). The organic layer was washed with
pH 7 buffer solution (10 mL) and brine (2 10 mL). The combined
organic layers were dried (MgSO4) and concentrated in vacuo. The
obtained monoalkylated SAMP-hydrazone was dissolved in
CH2Cl2 (50 mL) and flushed with ozone (60 L h–1) at –78 °C for
15 min. The reaction mixture was allowed to warm to r.t. and
flushed with argon. After removal of the solvent under reduced
pressure, the crude product was purified by flash chromatography
(silica gel,; n-pentane–Et2O, 20:1 to 30:1) to afford the 4-substituted
dioxanones (S)-2 as colorless oils (Table 5).
SAMP hydrazone (S)-1 was prepared by modification26 of the meth-
od of Woodward and Vorbrüggen reported by Hoppe et al.27 on a
65 mmol scale.
4-Substituted Dioxanones (S)-2; General Procedure
SAMP-hydrazone (S)-1 (10 mmol) was dissolved in anhyd THF
(40 mL). t-BuLi (11 mmol, 15% in n-pentane) was added dropwise
Table
5
Spectroscopic Data of 4-Substituted Dioxanones (S)-2a–ea
(S)-2
IR (CHCl3)
(cm–1)
1H NMR (CDCl3, TMS)
, J (Hz)
13C NMR (CDCl3, TMS),
MS (70 eV)
m/z (%)
(S)-2a
(S)-2b
(S)-2c
3473, 3086, 3063, 3028, 2989, 2936, 1.42 (s, 3 H, CH3), 1.45 (s, 3 H, CH3), 24.1, 24.4 (2 C, CH3), 30.4, 236 (15), 235 (M+
2865, 2633, 2157, 1951, 1875, 1801, 1.86 (m, 1 H, CHCHH), 2.20 (m, 1 H, 31.2 (2 C, CH2), 66.7
+ 1, 100), 218 (7),
217 (64), 178 (11),
177 (93), 176 (14),
159 (36), 134 (11),
133 (11), 131 (5),
130 (6)b
1746, 1604, 1585, 1497, 1455, 1432, CHCHH), 2.68 (m, 1 H, PhCHH),
1379, 1323, 1250, 1225, 1173, 1105, 2.80 (m, 1 H, PhCHH), 3.95 (d,
1071, 1036, 991, 974, 918, 867, 853, J = 17.0, 1 H, OCHH), 4.15 (ddd,
(OCH2), 73.8 (CH), 101.1
(CCH3), 126.3 (pCH),
128.3, 128.6 (4 C, OCH,
774, 750, 701, 623, 605, 582, 538,
517, 490
J = 1.5, 3.6, 9.1, 1 H, CH), 4.24 (dd, mCH), 141.2 (CPh), 209.8
J = 1.5, 16.9, 1 H, OCHH), 7.16–7.29 (C=O)
(m, 5 H, PhH)
3841, 3752, 3676, 3454, 3090, 3061, 1.35 (s, 3 H, CH3), 1.43 (s, 3 H, CH3), 23.9, 24.3 (2 C, CH3), 34.8 220 (M+, 14), 162
3028, 2989, 2937, 2879, 2345, 2142, 2.79 (dd, J = 9.1, 14.8, 1 H, PhCHH), (PhCH2), 66.9 (OCH2), 75.9 (51), 131 (12), 129
1944, 1873, 1854, 1803, 1747, 1655, 3.24 (dd, J = 3.3, 14.8, 1 H, PhCHH), (CH), 101.2 (CCH3), 123.6 (35), 120 (38), 119
1605, 1582, 1562, 1499, 1454, 1423, 4.01 (d, J = 17.0, 1 H, OCHH), 4.26 (pCH), 128.4, 129.4
1383, 1332, 1254, 1223, 1173, 1151, (dd, J = 1.5, 17.2, 1 H, OCHH), 4.46 (4C, OCH, mCH), 137.9
(10), 104 (14), 103
(12), 92 (68), 91
(69), 72 (100), 65
(10), 59 (31)
1103, 1083, 1065, 1029, 991, 962,
911, 893, 841, 822, 786, 757, 721,
696, 614, 577, 537, 500, 475, 455
(ddd, J = 1.4, 3.3, 9.1, 1 H, CH),
7.20–7.31 (m, 5 H, PhH)
(CPh), 209.0 (C=O)
3477, 3093, 3056, 3027, 2963, 2905, 1.31 (s, 9 H, PhCCH3), 1.38 (s, 3 H, 24.0, 24.3 (2 C, OCCH3),
2870, 1906, 1749, 1608, 1573, 1516, OCCH3), 1.43 (s, 3 H, OCCH3), 2.77 31.8 (3 C, PhCCH3), 34.3
1463, 1425, 1375, 1325, 1269, 1252, (dd, J = 8.9, 15.0, 1 H, PhCHH), 3.22 (PhCH2), 34.8 (PhCCH3),
276 (M+, 31), 218
(12), 178 (20), 161
(31), 148 (12), 147
(100), 129 (20), 72
(19)
1222, 1174, 1099, 1068, 1021, 988,
962, 924, 901, 831, 817, 756, 707,
663, 601, 569, 543, 503, 473
(dd, J = 3.0, 15.1, 1 H, PhCHH), 4.00 66.9 (OCH2), 75.9 (CH),
(d, J = 17.0, 1 H, OCHH), 4.26 (dd, 101.2 (OCCH3), 125.4,
J = 1.5, 17.2, 1 H, OCHH), 4.47 (m, 129.0 (4 C, OCPh, mCPh),
1H, CH), 7.18–7.33 (m, 4 H, PhH)
134.8, 149.3 (2 C, pCPh,
CPh), 209.1 (C=O)
(S)-2d
(S)-2e
3472, 3387, 2970, 2939, 2878, 2638, 0.90 (d, J = 6.9, 3 H, CHCH3), 1.03
1804, 1749, 1464, 1427, 1375, 1326, (d, J = 6.9, 3 H, CHCH3), 1.44 (s, 6 H, 23.3, 24.1 (2 C, CCH3), 28.0 (14), 100 (16), 73
1286, 1251, 1226, 1165, 1132, 1103, CCH3), 2.24 (septd, J = 4.1, 6.9, 1 H, (CHCH3), 67.2 (OCH2),
1089, 1074, 1029, 975, 962, 925, 873, CHCH3), 3.95 (d, J = 16.8, 1 H,
16.5, 19.0 (2 C, CHCH3),
172 (M+, 3), 114
(10), 72 (100), 69
78.7 (OCH), 100.5 (CCH3), (11), 59 (42)
209.7 (C=O)
852, 769, 706, 663, 619, 555, 537,
510, 467
OCHH), 4.03 (dd, J = 1.4, 4.1, 1 H,
OCH), 4.19 (dd, J = 1.5, 16.9, 1 H,
OCHH)
3477, 2988, 2958, 2935, 2872, 2593, 0.91 (t, J = 7.1, 3 H, CH2CH3), 1.44
14.1 (CH2CH3), 22.7
186 (M+, 2), 128
2339, 1803, 1748, 1631, 1462, 1428, (s, 3 H, CCH3), 1.46 (s, 3 H, CCH3), (CH2CH3), 23.7, 24.2 (2 C, (11), 100 (20), 86
1380, 1326, 1272, 1224, 1180, 1164, 1.28–1.44 (m, 4 H, CH3CH2,
CCH3), 27.4, 28.3 (2 C,
CH3CH2CH2, CHCH2),
66.8 (OCH2), 76.9 (CH),
(10), 85 (11), 72
(100), 59 (32), 58
(12), 57 (11), 55
1121, 1095, 1067, 1019, 994, 975,
951, 916, 860, 788, 756, 728, 665,
605, 544, 518, 471
CH3CH2CH2), 1.48–1.59 (m, 1 H,
CHCHH), 1.83–1.92 (m, 1 H,
CHCHH), 3.98 (d, J = 17.0, OCHH), 100.9 (CCH3), 210.0 (C=O) (13)
4.21 (ddd, J = 1.5, 3.8, 8.4, 1 H, CH),
4.25 (dd, J = 1.5, 16.9, 1 H, OCHH)
a Satisfactory elemental analyses obtained: C, H 0.4.
b CI (isobutane).
Synthesis 2002, No. 11, 1571–1577 ISSN 0039-7881 © Thieme Stuttgart · New York