Nekola et al.
Scheme 1
enzymatic reaction, which presupposes coordination of the
substrate thioether to the vanadium center, is reminiscent of
dimethyl sulfoxide (DMSO) reductase, a molybdopterin
containing oxotransferase,17 stressing the similarity of the
chemistry, also on the biological level, of vanadium and
molybdenum.
Investigations of vanadium model compounds containing,
in addition to an imine or aromatic nitrogen function
modeling histidine binding, thiolate and/or thioether ligands
are of interest in this context. Pursuing continuing work on
this theme carried out by us18-21 and others,22-29 we have
now investigated the coordination properties of a neutral
tetradentate ligand, N2S2, containing two aromatic N (pyridyl)
and two thioether functions, a dianionic pentadentate ligand
with one pyridyl-N, two thioether (S) and two thiolate (S′)
groups, viz., NS2S′2, and a dianionic S′NS′ ligand, formed
in situ, and containing an imine-N and two thiolate functions;
cf. Scheme 1.
Experimental Section
Materials and Methods. The following starting materials were
synthesized according to published procedures: [VI2(THF)4] (THF
) tetrahydrofuran),30 [VI3(THF)3],31 [VCl3(THF)3],32 [VBr2-
(tmeda)2] (tmeda ) Me2NCH2CH2NMe2),33 [VBr3(THF)3],34 [V2-
(µ-Cl)3(THF)6]2[Zn2Cl6],35 N2S2,36 H2NS2S′2‚HCl.37 2,2′-Dithio-
dibenzaldehyde and o-mercaptoaniline were purchased.
(15) ten Brink, H. B.; Tuynman, A.; Dekker: H. L.; Hemrika, W.; Izumi,
Y.; Oshiro, T.; Schoemaker, H. E.; Wever, R. Inorg. Chem. 1998, 37,
6780-6784.
(16) Arends, I. W. C. E.; Pellizo Birelle, M.; Sheldon, R. A. Stud. Surf.
Sci. Catal. 1997, 110, 1031-1040.
(17) Rees, D. C. Science 1996, 272, 1615-1621.
(18) Tsagkalidis, W.; Rehder, D. J. Biol. Inorg. Chem. 1996, 1, 507-514.
(19) Farahbakhsh, M.; Nekola, H.; Schmidt, H.; Rehder, D. Chem. Ber./
Recueil 1997, 130, 1129-1133.
IR spectra were obtained in KBr pellets on a Perkin-Elmer FT
1720, and in CsI pellets on a Perkin-Elmer 1700 XFT IR
spectrometer. NMR spectra were measured on a Bruker AM 360
or Varian Gemini 200 instrument with the usual spectrometer
settings. Solution EPR spectra of 3 (in THF and 2-Me-THF) were
scanned at ca. 9.6 GHz (X-band) on a Bruker ESP-300 E
spectrometer at room temperature and 100 K. The X-ray fluores-
cence analysis was performed with a Spectro X-Lab energy-
dispersive spectrometer in the 25 keV range. Conductivity mea-
surements of 2a were carried out with a WTW LF 410 conductivity
cell at room temperature and concentrations between 2 and 3 mM
in DMSO. Cyclovoltammetric measurements of 4 (in DMSO) were
carried out under N2 atmosphere with an EG&G Princeton Applied
Research Potentiostat 273A, using a standard three electrode
assembly (Pt foil as the working and a Pt wire as the counter
electrode, SCE as the reference). Tetra-n-butylammonium perchlo-
rate (TBAP) (0.2 M) was used as supporting electrolyte. Calibration
was carried out against Fc/Fc+.
(20) Maurya, M. R.; Khurana, S.; Schulzke, C.; Rehder, D. Eur. J. Inorg.
Chem. 2001, 779-788.
(21) Wang, D.; Ebel, M.; Schulzke, C.; Gru¨ning, C:; Hazari, S. K. S.;
Rehder, D. Eur. J. Inorg. Chem. 2001, 935-942.
(22) Nanda, K. K.; Sinn, E.; Addison, A. W. Inorg. Chem. 1996, 35, 2-3.
(23) Davies, S. C.; Hughes, D. L.; Janas, Z.; Jerzykiewicz, L. B.; Richards,
R. L.; Sanders, J. R.; Silverston, J. E.; Sabota, P. Inorg. Chem. 2000,
39, 3485-3498.
(24) Klich, P. R.; Daniher, A. T.; Challen, P. R.; McConville, D. B.;
Youngs, W. J. Inorg. Chem. 1996, 35, 347-356.
(25) Maeda, H.; Kanamori, K.; Michibata, H.; Tonno, T.; Okamoto, K.;
Hidaka, J. Bull. Chem. Soc. Jpn. 1993, 66, 790-796.
(26) Sendlinger, S. C.; Nicholson, J. R.; Lobkovsky, E. B.; Huffman, J.
C.; Rehder, D.; Christou, G. Inorg. Chem. 1993, 32, 204-210.
(27) Higgs, T. C.; Ji, D.; Czernuszewicz, R. S.; Matzanke, B. F.;
Schunemann, V.; Trautwein, A. X.; Helliwell, M.; Ramirez, W.;
Carrano, C. J. Inorg. Chem. 1998, 37, 2383-2392.
(28) Durrant, M. C.; Davies, S. C.; Hughes, D. L.; Le Floc’h, C.; Richards,
R. L.; Sanders, J. R.; Champness, N. R.; Pope, S. J. A.; Reid, G. Inorg.
Chim. Acta 1996, 251, 13-14.
(29) Wenzel, B.; Strauch, P. Z. Naturforsch. 1999, 54b, 165-170.
(30) Hitchcock, P. B.; Hughes, D. L.; Leigh, G. J.; Sanders, J. R.; de Souza,
J.; McGarry, C. J.; Larkworthy, L. F. J. Chem. Soc., Dalton Trans.
1994, 3683-3687.
(31) Davies, S. C.; Durrant, M. C.; Huges, D. L.; Le Floc’h, C.; Pope, S.
J. A.; Reid, G.; Richards, R. L.; Sanders, J. R. J. Chem. Soc., Dalton
Trans. 1998, 2191-2198.
(32) Manzer, L. E., Fackler, J. P., Eds. Inorganic Syntheses; Wiley: New
York 1982; Vol. XXI, p 138.
(33) Hitchcock, P. B.; Hughes, D. L.; Larkworthy, L. F.; Leigh, G. J.;
Marmion, C. J.; Sanders, J. R.; Smith, G. W.; de Souza, J. S. J. Chem.
Soc., Dalton Trans. 1997, 1127-1135.
(34) Fowles, G. W. A.; Greene, P. T.; Lester, T. E. J. Inorg. Nucl. Chem.
1967, 29, 2365-2370.
X-ray structure analyses were carried out in the θ/2θ scan mode
using Mo KR irradiation (λ ) 0.710 73 Å: Hilger & Watts Y290,
3‚THF; Sart Apex CCD, 4‚THF and 5‚pentane). In the case of 5,
a slight disorder of the site occupancy of the VdO group (above
(35) Cotton, F. A.; Duraj, S. A.; Extine, M. W.; Lewis, G. E.; Roth, W.
T.; Schmulbach, C. D.; Schwotzer, W. J. J. Chem. Soc., Chem.
Commun. 1983, 1377-1378.
(36) Livingstone, S. E.; Nolan, J. D. Aust. J. Chem. 1970, 23, 1553-1558.
(37) Sellmann, D.; Utz, J.; Heinemann, F. W. Inorg. Chem. 1999, 38, 459-
466.
2380 Inorganic Chemistry, Vol. 41, No. 9, 2002