B. Shi6arama Holla et al. / European Journal of Medicinal Chemistry 37 (2001) 511–517
513
Table 2
Characterization data of compounds 4a–w
Compound
R
R1
R11
M.p. (°C)
Yield (%)
Molecular formula
Anal. %N found [calculated]
4a
4b
4c
4d
4e
4f
4g
4h
4i
H
H
H
Cl
Cl
Cl
Cl
Cl
Cl
Cl
Cl
Cl
Cl
Cl
H
H
H
H
H
H
H
H
H
Cl
Cl
Cl
Cl
Cl
H
H
H
Cl
Cl
Cl
Cl
Cl
Cl
C6H5
114–16
168–70
88–90
190–92
166–68
106–08
58–60
65
71
75
66
80
69
72
78
65
75
73
69
77
82
74
78
84
81
78
76
72
80
79
C26H18N8O2S2
C26H16N10O6S2
20.79 [20.82]
22.25 [22.29]
18.41 [18.45]
17.49 [17.46]
19.49 [19.56]
18.61 [18.65]
24.32 [24.37]
21.08 [21.13]
17.52 [17.46]
16.62 [16.57]
18.38 [18.45]
17.59 [17.64]
20.14 [20.09]
16.50 [16.57]
18.80 [18.86]
20.52 [20.47]
16.81 [16.89]
15.98 [16.06]
17.75 [17.82]
17.12 [17.06]
22.12 [22.20]
21.36 [21.39]
16.02 [16.06]
4-NO2C6H4
2-ClC6H4
4-ClC6H4
C6H5
C6H5CH2
3-pyridyl
4-NO2C6H4
2-ClC6H4
4-ClC6H4
C6H5
C6H5CH2
4-NO2C6H4
2-ClC6H4
C6H5
4-NO2C6H4
2-ClC6H4
4-ClC6H4
C6H5
C26H16Cl2N8O2S2
C26H15Cl3N8O2S2
C26H17ClN8O2S2
C28H21ClN8O2S2
C24H15ClN10O2S2
C26H15ClN10O6S2
C26H15Cl3N8O2S2
C26H14Cl4N8O2S2
C26H16Cl2N8O2S2
C28H20Cl2N8O2S2
C26H14Cl2N10O6S2
C26H14Cl4N8O2S2
C30H26N8O2S2
236–38
92–94
4j
4k
4l
218–20
128–30
102–04
196–98
108–10
100–02
148–50
124–26
118–20
102–04
98–100
118–20
138–40
106–08
4m
4n
4o
4p
4q
4r
4s
4t
tBu
tBu
tBu
tBu
tBu
tBu
tBu
tBu
tBu
C30H24N10O6S2
C30H24Cl2N8O2S2
C30H23Cl3N8O2S2
C30H25ClN8O2S2
C32H29ClN8O2S2
C28H23ClN10O2S2
C30H23ClN10O2S2
C30H23Cl3N8O2S2
C6H5CH2
3-pyridyl
4-NO2C6H4
2-ClC6H4
4u
4v
4w
IR (KBr, wmax cm−1): 4a: 3125 (CꢁH), 1614 (CꢂN), 1585 (CꢂC); 4b: 3132 (CꢁH), 1610(CꢂN), 1581 (CꢂC), 1529 (NO2), 1348 (NO2), 4c: 3113
(CꢁH), 1609 (CꢂN), 1586 (CꢂC), 728 (CꢁCl); 4d: 3120 (CꢁH), 1612 (CꢂN), 1584 (CꢂC), 730 (CꢁCl); 4e: 3126 (CꢁH), 1608 (CꢂN), 1585 (C=C);
4g: 3115 (CꢁH), 1624(CꢂN), 1589 (CꢂC); 4h: 3123 (CꢁH), 1604 (CꢂN), 1589 (CꢂC), 1531 (NO2), 1352 (NO2); 4j: 3115 (CꢁH), 1606 (CꢂN), 1588
(CꢂC), 726 (CꢁCl); 4m: 3135 (CꢁH), 1614 (CꢂN), 1593 (CꢂC), 1534 (NO2), 1357 (NO2); 4q: 3128 (CꢁH), 1612 (CꢂN), 1581 (CꢂC), 731 (CꢁCl);
4v: 3142 (CꢁH), 1616 (CꢂN), 1594 (CꢂC), 1535 (NO2), 1356 (NO2); 4w: 3121 (CꢁH), 1613 (CꢂN), 1589 (CꢂC), 728 (CꢁCl). 1H-NMR
(DMSO-d6–CDCl3): 4a: l 5.48 (bs, 4H, 2×OCH2), 7.04–7.93 (m, 14H, ArꢁH); 4b: l 5.45 (bs, 4H, 2×OCH2), 7.04–7.63 (m, 12H, ArꢁH); 4c: l
5.45 (s, 2H, OCH2), 5.51 (s, 2H, OCH2), 7.04–7.13 (m, 2H, ArꢁH), 7.43–7.63 (m, 7H, ArꢁH), 7.79 (d, 1H, ArꢁH, J=7.6 Hz), 8.02–8.06 (m, 2H,
ArꢁH); 4f: l 4.26 (bs, 4H, 2×CH2), 5.44 (bs, 4H, 2×OCH2), 7.12–8.17 (m, 13H, ArꢁH); 4h: l 5.53 (s, 2H, OCH2), 5.60 (s, 2H, OCH2), 7.09 (d,
1H, ArꢁH, J=6 Hz), 7.22 (s, 1H, ArꢁH), 7.34 (d, 1H, ArꢁH, J=9.1 Hz), 7.57 (s, 1H, ArꢁH), 8.03 (s,1H, ArꢁH), 8.17–8.34 (m, 3H, ArꢁH), 8.42
(m, 3H, ArꢁH); 4k: l 5.42 (bs, 4H, 2×OCH2), 7.14–7.84 (m, 12H, ArꢁH); 4m: l 5.58 (bs, 4H, 2×OCH2), 7.09 (d, 1H, ArꢁH, J=9 Hz), 7.22 (s,
1H, ArꢁH), 7.34 (d, 1H, ArꢁH, J=9 Hz), 7.57 (s, 1H, ArꢁH), 8.17–8.34 (m, 6H, ArꢁH); 4o: l 1.32 (bs, 9H, t-butyl), 5.50 (s, 2H, OCH2), 5.54
(s, 2H, OCH2), 6.94–8.04 (m, 13H, ArꢁH,); 4q: l 1.34 (bs, 9H, t-butyl), 5.53 (s, 2H, OCH2), 5.55 (s, 2H, OCH2), 6.94–8.12 (m, 11H, ArꢁH,); 4s:
l 1.29 (bs, 9H, t-butyl), 5.53 (bs, 4H, 2×OCH2), 6.99–8.14 (m, 12H, ArꢁH); 4u: l 1.34 (bs, 9H, t-butyl), 5.51 (bs, 4H, 2×OCH2), 6.92–8.22 (m,
10H, ArꢁH,); 4w: l 1.37 (bs, 9H, t-butyl), 5.51 (bs, 4H, 2×OCH2), 7.13–8.32 (m, 10H, ArꢁH). MS: 4a: m/z 538 [8%, M+], 430 [15%,
M−hydroquinone], 190 (100%), 121 (25%, C6H5ꢁCꢂS), 77 (19%, phenyl cation); 4b: m/z 628 [12%, M+], 148 [100%, 4-NO2C6H4CN]; 4d: m/z 640
[14%, M+] 137 [100%, 4-ClC6H4CN]; 4f: m/z 600 [12%, M+], 91 (100%, C6H5CH2); 4h: m/z 662 (46%, M+); 4o: m/z 594 [9%, M+], 103 [100%,
C6H5CN]; 4r: m/z 696 [9%, M+], 137 [100%, 4-ClC6H4CN], 57 (48%, ꢁC(CH3)3); 4v: m/z 654 [14%, M+], 148 (100%, 4-NO2lC6H4CN), 57 (25%,
ꢁC(CH3)3); 4w: m/z 696 [16%, M+], 137 (100%, 2-ClC6H4CN), 57 (41%, ꢁC(CH3)3).
3a showed absorption bands at 3225, 2947,1614, 1583
and 1026 cm−1 corresponding to the NH2, CꢁH, CꢂN,
CꢂC, and CꢂS groups, respectively. The absence of
band due to carbonyl stretching frequency of the parent
bis-phenoxyacetic acid clearly indicates the formation
of bis-triazole 3a. The IR spectra of other bis-triazoles
of the series showed similar absorption bands.
Mass spectra of compounds 3a, 3b and 3d showed
molecular ion a peaks at m/z 366, 400 and 422, respec-
tively, in agreement with their molecular formulae.
These bis-aminomercaptotriazoles were converted
into bis-triazolothiadiazoles 4, 5 and 6 in good yields.
These N-bridged bis-heterocycles were characterised on
1
the basis of IR, H-NMR and mass spectral data. IR
1
The H-NMR spectrum of 3a showed a broad singlet
spectrum of compound 4a showed an absorption band
at 1614 cm−1 corresponding to the CꢂN stretching
frequency of thiadiazole ring. The absence of absorp-
tion bands due to NH2, SH and CꢂO stretching fre-
quencies of starting triazoles and carboxylic acids
clearly indicated the formation of cyclised products.
at l 5.62 corresponding to OCH2 protons. A sharp
singlet observed at l 5.14 is attributed to the NꢁNH2
protons. The aromatic protons resonated as a multiplet
in the region l 6.92–7.12 integrating for four protons.
The SH protons resonated as a broad singlet at l 13.8.
1
1
The H-NMR spectra of 3c and 3e were also recorded
The H-NMR spectrum compound 4o showed broad
and data are given in Table 1.
singlet at l 1.32 integrating for nine protons of the