C O M M U N I C A T I O N S
Scheme 2
References
(1) (a) Jutzi, P. Angew. Chem., Int. Ed. Engl. 1975, 14, 232. (b) Gusel’nikov,
L. E.; Nametkin, N. S. Chem. ReV. 1979, 79, 529.
(2) Brook, A. G.; Abdesaken, F.; Gutekunst, B.; Gutekunst, G.; Kallury, R.
K. J. Chem. Soc., Chem. Commun. 1981, 191.
(3) West, R.; Fink, M. J.; Michl, J. Science 1981, 214, 1343.
(4) For the recent reviews on metallenes and dimetallenes of group 14
elements, see: (a) Baines, K. M.; Stibbs, W. G. AdV. Organomet. Chem.
1996, 39, 275. (b) Okazaki, R.; West, R. AdV. Organomet. Chem. 1996,
39, 231. (c) Kaftory, M.; Kapon, M.; Botoshansky, M. In The Chemistry
of Organic Silicon Compounds; Rappoport, Z., Apeloig, Y. Eds.; John
Wiley & Sons Ltd.: New York, 1998; Vol. 2, Part 1, Chapter 5. (d)
Weidenbruch, M. Eur. J. Inorg. Chem. 1999, 373. (e) Power, P. P. Chem.
ReV. 1999, 99, 3463. (f) Escudie´, J.; Ranaivonjatovo, H. AdV. Organomet.
Chem. 1999, 44, 113. (g) Weidenbruch, M. In The Chemistry of Organic
Silicon Compounds; Rappoport, Z., Apeloig, Y. Eds.; John Wiley & Sons
Ltd.: New York, 2001; Vol. 3, Chapter 5.
(5) For other examples of heteronuclear dimetallenes of heavier group 14
elements, which were stable only at low temperatures and were character-
ized by low-temperature NMR spectra and trapping reactions without
isolation: For germasilene, see: (a) Baines, K. M.; Cooke, J. A.
Organometallics 1991, 10, 3419. (b) Baines, K. M.; Cooke, J. A.
Organometallics 1992, 11, 3487. For germastannene, see: (c) Chaubon,
M.-A.; Escudie´, J.; Ranaivonjatovo, H.; Satge´, J. J. Chem. Soc., Chem.
Commun. 1996, 2621.
Scheme 3
(6) For 2-disilagermirene with a SidGe double bond, see: Lee, V. Ya.;
Ichinohe, M.; Sekiguchi, A.; Takagi, N.; Nagase, S. J. Am. Chem. Soc.
2000, 122, 9034.
completely opposite tendency. Such an unusual structural feature
can be rationalized by the polar SidSn double bond produced by
the difference in the substituent electronegativity between the silyl
and aryl groups. The electronegativities of Si and Sn atoms are
almost equal,17 but the electropositive silyl groups on the sp2 Si
atom and the electronegative aryl groups on the Sn atom cause the
great polarity of the double bond, Siδ-dSnδ+. The trans-bent
structure of dimetallenes of the heavier group 14 elements is well-
explained as a dimer of the corresponding divalent species by the
donor-acceptor interaction. If an unsymmetrical donor-acceptor
interaction operates in the doubly bonded system of heavier group
14 elements, the double bond would be polarized with different
bending angles; a negative moiety is more bent than a positive one
(Scheme 2).18 Therefore, the electronegative sp2 silicon part is more
bent than the Sn part in 2. Indeed, a calculation on the model
silastannene (H3Si)2SidSnPh2 (B3LYP/DZd level) revealed that the
SidSn double bond is highly polarized (NPA analysis): -0.536
for the Si atom and +1.400 for the Sn atom.19 The geometry of
the SidSn double bond was also well reproduced by the calcula-
tions, except for the twisting angle (5°): a SidSn double bond
length of 2.445 Å with bending angles of 17.8° around the Si atom
and 7.2° around the Sn atom.
(7) Lee, V. Ya.; Ichinohe, M.; Sekiguchi, A. J. Am. Chem. Soc. 2000, 122,
12604.
(8) (a) Sekiguchi, A.; Ichinohe, M.; Yamaguchi, S. J. Am. Chem. Soc. 1999,
121, 10231. (b) Ichinohe, M.; Arai, Y.; Sekiguchi, A.; Takagi, N.; Nagase.
S. Organometallics 2001, 20, 4141.
(9) To our knowledge, there is only one paper in which the intermediate
formation of a compound with a SidSn double bond was suggested. Drost,
C.; Gehrhus, B.; Hitchcock, P. B.; Lappert, M. F. Chem. Commun. 1997,
1845. However, neither spectroscopic nor chemical reactivity evidence
was given to prove this structure.
(10) Masamune, S.; Sita, L. R. J. Am. Chem. Soc. 1985, 107, 6390.
(11) Spectral data for 2: violet crystals; mp 78-79 °C. 1H NMR (C6D6, δ)
0.26 (s, 6 H), 1.03 (d, J ) 6.6 Hz, 12 H), 1.17 (d, J ) 6.6 Hz, 12 H), 1.27
(s, 36 H), 1.41 (d, J ) 6.6 Hz, 12 H), 2.73 (sept, J ) 6.6 Hz, 2 H), 3.74
(sept, J ) 6.6 Hz, 4 H), 7.09 (s, 4 H, ArH); 13C NMR (C6D6, δ) -3.0,
22.0, 24.1, 25.8, 30.7, 34.6, 40.4, 122.6, 150.1, 154.2, 154.6; 29Si NMR
(C6D6, δ) 27.4 (SidSn), 27.6 (SiMetBu2); 119Sn NMR (C6D6, δ) 516.7;
UV/vis (hexane) λmax/nm (ꢀ) 262 (21300), 337sh (2700), 545 (4100). Anal.
Calcd for C48H88Si3Sn: C, 66.41; H, 10.22. Found: C, 66.11; H, 10.00.
(12) The typical 119Sn NMR resonances of doubly bonded Sn atoms lie in the
region above +400 ppm, see ref 4a.
(13) The typical 29Si NMR resonances for doubly bonded Si atoms lie in the
region of +49 to +155 ppm, see ref 4b.
(14) Crystal data for 2 at 120 K: MF ) C48H88Si3Sn, MW ) 868.14,
monoclinic, P21/n, a ) 10.9180(9), b ) 18.9170(11) Å, c ) 25.0480(18)
Å, â ) 94.397(4)°, V ) 5158.1(6) Å3, Z ) 4, Dcalcd ) 1.118 g‚cm-3. The
final R factor was 0.0680 for 8168 reflections with Io > 2σ(Io) (Rw
0.1630 for all data 12279 reflections), GOF ) 1.024.
)
(15) See ref 4c and also: Schmedake, T. A.; Haaf, M.; Apeloig, Y.; Mu¨ller,
T.; Bukalov, S.; West, R. J. Am. Chem. Soc. 1999, 121, 9479.
(16) Mackay, K. M. In The Chemistry of Organic Germanium, Tin and Lead
Compounds; Patai, S., Ed.; John Wiley & Sons Ltd.: New York, 1995;
Chapter 2.
(17) The electronegativities of Si and Sn atoms according to the Pauling and
the Allred-Rochow electronegativity scales are 1.90 vs 1.96 and 1.90
vs. 1.93, respectively.
(18) The structure on the bottom in Scheme 2 represents an extreme case of
such interaction with a planar geometry around a positively polarized Sn
atom and 90° bending geometry around a negatively polarized Si atom.
The SidSn double bond in 2 is highly reactive and easily
undergoes addition reactions. Thus, 2 reacted with PhOH and PhSH
at room temperature to form the corresponding addition products
3 and 4 in 51 and 26% yields, respectively (Scheme 3).20 The
regioselectivity of PhEH (E ) O, S) addition corresponds well with
the polarity of the SidSn double bond in 2.
Supporting Information Available: Experimental procedures and
spectral data of 3 and 4, tables of crystallographic data including atomic
positional and thermal parameters for 2 (PDF/CIF). This material is
(19) The calculations were carried out using the Gaussian 98 program.
(20) For the experimental procedures and spectral data of 3 and 4, see the
Supporting Information.
JA021077L
9
J. AM. CHEM. SOC. VOL. 124, NO. 50, 2002 14823