S. Takahashi et al. / Tetrahedron Letters 43 (2002) 8661–8664
8663
McLaughlin, J. L. J. Am. Chem. Soc. 1995, 117,
10409–10410; (b) Alali, F. Q.; Rogers, L; Zhang, Y.;
McLaughlin, J. L. Tetrahedron 1998, 54, 5833–5844; (c)
Chavez, D.; Acevedo, L. A.; Mata, R. J. Nat. Prod.
1998, 61, 419–421.
2. (a) Crimmins, M. T.; Rafferty, S. W. Tetrahedron Lett.
1996, 37, 5649–5652; (b) Evans, P. A.; Roseman, J. D.
Tetrahedron Lett. 1997, 38, 5249–5252; (c) Evans, P. A.;
Murthy, V. S. Tetrahedron Lett. 1998, 39, 9627–9628;
(d) Neogi, P.; Doundoulakis, T.; Yazbak, A.; Sinha, S.
C.; Sinha, S. C.; Keinan, E. J. Am. Chem. Soc. 1998,
120, 11279–11284; (e) Evans, P. A.; Murthy, V. S. Tet-
rahedron Lett. 1999, 40, 1253–1256; (f) Baurle, S.; Hop-
pen, S.; Koert, U. Angew. Chem. Int. Ed. 1999, 38,
1263–1266; (g) Takahashi, S.; Fujisawa, K.; Sakairi, N.;
Nakata, T. Heterocycles 2000, 53, 1361–1370; (h) Hop-
pen, S.; Emde, U.; Friedrich, T.; Grubert, L.; Koert,
U. Angew. Chem. Int. Ed. 2000, 39, 2099–2102; (i)
Hoppen, S.; Baurle, S.; Koert, U. Chem. Eur. J. 2000,
6, 2382–2396.
Figure 2.
was transformed into a C-8 epimeric mixture of tetraols
4a via the corresponding monotosylates (97% yield).
Formation of the second ether-ring was achieved by
heating 4a with sodium methoxide (2.0 eq.) in methanol
at 50°C to provide the desired cyclic ether 12 in 78%
yield after isopropylidenation. The remaining task was
introduction of an ethynyl group through a stereoinver-
sion at the C-2 position. Prior to the transformation,
the 12-hydroxyl group was protected as a methoxy-
methyl (MOM) ether, and subsequent hydrolysis gave a
diol 13 in 89% yield. Successive treatment of 13 with
benzoyl chloride and methanesulfonyl chloride in pyri-
dine provided a mesyl benzoate. Exposure of the ben-
zoate to alkaline conditions led to an oxirane formation
to give 14 in 83% yield from 13. The epoxide 14 reacted
with lithium trimethylsilylacetylide in the presence of
BF3·E2O to produce a terminal acetylene 2 in 97% yield
after de-silylation (potassium carbonate, MeOH).
3. Shi, G.; Kozlowski, J. F.; Schwedler, J. T.; Wood, K.
V.; MacDougal, J. M.; McLaughlin, J. L. J. Org.
Chem. 1996, 61, 7988–7989.
4. (a) Takahashi, S.; Nakata, T. Tetrahedron Lett. 1999,
40, 723–726 and 727–730; (b) Takahashi, S.; Nakata, T.
J. Org. Chem. 2002, 67, 5739–5752; (c) Takahashi, S.;
Maeda, K.; Hirota, S.; Nakata, T. Org. Lett. 1999, 1,
2025–2028; (d) Takahashi, S.; Kubota, A.; Nakata, T.
Abstracts of Papers, 43rd Tennen Yuki Kagobutsu
Toronkai, Osaka, October 2001, pp. 563–568.
5. (a) Schaus, S. E.; Branalt, J.; Jacobsen, E. N.
J. Org. Chem. 1998, 63, 4876–4877; (b) Yang, W.-Q.;
Kitahara, T. Tetrahedron Lett 1999, 40, 7827–7830; (c)
Yang, W.-Q.; Kitahara, T. Tetrahedron 2000, 56, 1451–
1461.
6. Sinha, S. C.; Keinan, E. J. Am. Chem. Soc. 1993, 115,
4891–4892.
7. All new compounds have been fully characterized spec-
troscopically and the elemental composition established
by combustion analysis or high-resolution mass
spectroscopy.
The complete carbon skeleton of 1 was assembled by
joining 2 and 34d,12 under Hoye’s conditions,13 to give
enyne 15 in 79% yield. This underwent regioselective
reduction with Wilkinson’s catalyst to give a partially
protected muconin, in which all protecting groups were
subsequently cleaved by hydrogen chloride in
methanol–CH2Cl2 to give muconin (1).14 The spectro-
scopic and physical properties of 1 were identical those
of natural 1.
In summary, we have succeeded in a convergent synthe-
sis of 1 via successive ether-ring formation reaction
under acidic and basic conditions and stereoselective
reduction of acyclic ketone as the key steps.
8. (a) Gao, Y.; Hanson, R. M.; Klunder, J. M.; Ko, S.
Y.; Masamune, H.; Sharpless, K. B. J. Am. Chem. Soc.
1987, 109, 5765–5780; (b) Kolb, H. C.; VanNieuwen-
hze, M. S.; Sharpless, K. B. Chem. Rev. 1994, 94,
2483–2547.
9. The optical purity was determined to be >94% e.e. by
the 1H NMR analyses of the corresponding MTPA
esters.
Acknowledgements
10. Although this compound included a trace amount of
the diastereomers, undesired isomers could be separated
at a later stage (vide infra).
11. Oishi, T.; Nakata, T. Acc. Chem. Res. 1984, 17, 338–
344.
12. This compound was prepared from the corresponding
aldehyde through a vinyl iodide formation.15 For an
alternative synthesis of the aldehyde, see: Sinha, S. C.;
Sinha, A.; Sinha, S. C.; Keinan, E. J. Am. Chem. Soc.
1997, 119, 12014–12015.
We are grateful to Dr. J. L. Mclaughlin for providing
us copies of the NMR spectra of natural muconin. We
also thank Ms. K. Harata (RIKEN) for mass spectral
measurements, and Dr. T. Chihara and his collabora-
tors in RIKEN for the elemental analyses.
References
13. Hoye, T. R.; Ye, Z. J. Am. Chem. Soc. 1996, 118,
1801–1803.
1. (a) Shi, G.; Alfonso, D.; Fatope, M. O.; Zeng, L.; Gu,
Z.-M.; Zhao, G.-X.; He, K.; MacDougal, J. M.;