10.1002/asia.202000092
Chemistry - An Asian Journal
COMMUNICATION
7
8
Br2(1.1)/DBU(3)/tBuOH-THF(1:4)/90oC/9h
Br2(1.5)/DBU(3.5)/tBuOH-THF/50oC/12h
>99%
15
55
95.2%
[2]
selected references - a) L. L. Zeng, Y. J. Ding, G. C. Zhang, H. R.
Song, W. H. Hu, Chin. Chem. Lett. 2009, 20, 1397-1399; b) K. B. Hansen,
J. Balsells, S. Dreher, Y. Hsiao, M. Kubryk, M. Palucki. N. Rivera, D.
Steinhuebel, J. D. III. Armstrong, D. Askin, D. J. Grabowski, Org. Process
res. Dev. 2005, 9, 634-639; c) K. B. Hansen, Y. Hsiao, F. Xu, N. Rivera,
A. Clausen, M. Kubryk, S. Krska, T. Rosner, B. Simmons, J. Balsells, N.
Ikemoto, Y. Sun, F. Spindler, C. Malan, E. J. J. Grabowski, J. D. III.
Armstrong, J. Am. Chem. Soc. 2009, 131, 8798-8804; d) C. K. Savile, J.
M. Janey, E. C. Mundorff, J. C. Moore, S. Tam, W. R. Jarvis, J. C.
Colbeck, A. Krebber, F. J. Fleitz, J. Brands, P. N. Devine, G. W. Huisman,
G. J. Hughes, Science, 2010, 329, 305-309; e) X. Pan, K. Wang, W. Yu,
R. Zhang, L. Xu, F. Liu, Chem. Lett. 2015, 44, 1170-1172; f) O. Gutierrez,
D. Metil, N. Dwivedi, N. Gudimalla, C. R. R. Eleti, V. Dahanukar, B.
Bhattacharya, R. Bandichchor, M. C. Kozlowski, Org. Lett. 2015, 17,
1742-1745; g) S. Zhou, J. Wang, X. Chen, J. L. Acena, V. A. Soloshonok,
H. Liu, Angew. Chem. Int. Ed. 2014, 53, 7883-7886; h) S. G. Davis, A. M.
Fletcher, J. E. thomson, Tetrahedron: Asymmetry 2015, 26, 1109-1116;
i) R. Angelaud, J. D. III. Armstrong, D. Askin, J. Balsells, K. B. Hansen,
J. Lee, P. E. Maligres, N. Rivera, Y. Xiao, Y. L, Zhong, PCT Int Appl. WO
2004/087650.
[a] isolated yield [b] Bis(trifluoroacetoxy)iodo)benzene and
[c] diacetoxyiodobenzene
Surprisingly,
reagents
such
as
Bis(trifluoroacetoxy)
iodo)benzene,13 diacetoxyiodobenzene,14 lead(IV) acetate,15
bromine in sodium tert-butoxide-butanol and sodium hypochlorite
with sodium hydroxide16 led to significant racemization despite
providing modest to good yields of the desired product 8.
Racemization was observed to a higher level with strongly acidic
and basic conditions (Table 3, entries 1-6). Gratifyingly, the use
of bromine in combination with Hunig’s base or DBU17 in tert-
butanol led to formation Boc protected product 8 with >99% ee
but with low yield (Table 3, entry 7). This is presumably due to the
evaporation of bromine from the reaction mixture at 90 oC.
Lowering the reaction temperature provided a modest yield of
55% when the reaction was conducted at 50 oC for 12h (Table 3,
entry 8). Finally, conversion of the Boc-protected amino acid 8 to
Sitagliptin phosphate was accomplished in three steps following
the known protocol reported in the literature.4a
[3]
See:
a)
chemistry-challenge-2006-greener-synthetic-pathways-award;
challenge-2010-greener-reaction-conditions-award.
b)
[4]
[5]
[6]
a) H. Gao, J. Yu, C. Ge, q. Jiang, Molecules 2018, 23, 1440-1452; b) W.
Y. Kwak, H. Y. Mok, S-H. Y, Bull. Korean Chem. Soc. 2017, 38, 976-979.
For a similar reaction: a) H. Jiang, W. Wang, C. Qiao, Chin. J. Chem.
2010, 2, 263-268
F
F
N
NH2 H3PO4
HN
HCl
N
F
F
N
NHBoc
OH
CF3
F
a) R.F. Hudson, P.A. Chopard, Helv. Chim. Acta, 1963, 46, 2178-2185;
b) S. Doulut, I. Dubuc, M. Rodriguez, F. Vecchini, H. Fulcrand, F. Barelli,
E. Checler, E. Bourdel, A. Aumeles, J. Med. Chem. 1993, 36, 1369-1379;
c) A.K. Ghosh, G.E. Schiltz, L.N. Rusere, H.L. Osswald, D.E. Walters, M.
Amanoc, H. Mitsuya, Org. Biomol. Chem. 2014, 12, 6842-6854; d) M.
Sun, Q. Wan, M-W. Ding, Tetrahedron, 2019, 75, 3441-3447.
a) M. J. Burk, J. Am. Chem. Soc. 1991, 113, 8518-8519; b) M. J. Burk,
J. E. Feaster, W. A. Nugent, R. L. Harlow, J. Am. Chem. Soc. 1993, 115,
10125-10138; c) M. J. Burk, Acc. Chem. Res, 2000, 33, 363.
C. J. Pilkington, A. Zanotti-Gerosa, Org. Lett. 2003, 5, 1273-1275.
T. Hogberg, P. Strom, F. M. Ebner, S. J. Ramsby, J. Org. Chem. 1987,
52, 2033-2036.
9
N
O
N
N
F
N
O
8
CF3
Sitagliptin phosphate 10
Scheme 1. Synthesis of Sitagliptin Phosphate.
[7]
In summary, we have developed
a
novel, route using
[8]
[9]
commercially available starting materials featuring
a
stereoselective
catalytic
asymmetric
reduction,
and
stereoselective Hoffmann rearrangement for the installation of
chiral β-amino center present in sitagliptin.
[10] a) M. W. Bundesmann, S. B. Coffey, S. W. Wright, Tetrahedron. Lett.
2010, 51, 3879-3882. b) “Enantioselective hydrogenation: phospholane
ligands”, C.J. Cobley and P.H. Moran, Editor(s): De Vries, Johannes
G.; Elsevier, Cornelis J., Handbook of Homogeneous
Hydrogenation (2007), 2 773-831. Publisher: Wiley-VCH
[11] L. Wu, C. Yang, L. Yang, L, Heterocycles 2009, 78, 977-982.
[12] a) A. W. Hofmann, Berichte der Deutschen Chemischen Gesellschaft,
1881, 14, 2725-2736; b) W. Everett, J. L, Organic Reactions. 3. 1946, pp.
267-306.
Supporting Information
Spectroscopic data and experimental details for the preparation
of all new compounds are available in supporting information. This
material is available free of charge via the Internet at
[13] a) A. R. Merrick, J. B. Stimmel, A. Thompson, L. Marc, Organic
Syntheses, 1988, 66:132. b) G. M. Loudon, A. S. Radhakrishna, M. R.
Almond, J. K. Blodgett, R. H. Boutin, J. Org. Chem. 1984, 49, 4272-4276.
[14] A. A. Zagulyaeva, C. T. Banek, M. S. Yusubov, V. A. Zhadkin. Org. Lett.
2010, 12, 4644-4647.
Acknowledgements
[15] H. Baumgarten, H. Smith, A. Staklis, J. Org. Chem. 1975, 40, 3554-3561.
[16] S. R. Mohan, K. A. Monk, J. Chem. Ed. 1999, 76, 1717.
We thank the management of the Dr. Reddy’s Laboratories Ltd.
for the support and encouragement. Technical help from the
analytical department is also appreciated.
[17] H. Xicai, M. Seid, J. W. Keillor, J. Org. Chem. 1997, 62, 7495-7496.
[18] a) K. B. Hansen, J. Balsells, S. Dreher, Y. Hsiao, M. Kubryk, M. Palucki,
N.Rivera, D. Steinhuebel, D. Armstrong, D. Jaskin, Org. Process Res.
Dev.2005, 9, 634; b) For recent review, see: O. I. Afanasyev, E.
Kuchuk, D. L.Usanov, D. Chusov, Chem. Rev. 2019, 119, 11857.
[19] K. B. Hansen, Y. Hsiao, F. Xu, N. Rivera, A. Clausen, M. Kubryk,
S. Krska, T.Rosner, B. Simmons, J. Balsells, J. Am. Chem. Soc.
2009, 131, 8798.
Keywords: Sitagliptin phosphate • Asymmetric Hydrogenation •
Hoffmann rearrangement
[20] For recent advance in enzyme catalyzed synthesis of sitagliptin
fromMerck, see: a) M. D. Truppo, H. Strotman, G.
[1]
a) N. A. Thornberry, A. E. Weber, Curr. Top. Med. Chem. 2007, 7, 557-
568; b) C. S. Shultz, S. W. Krska, Acc. Chem. Res. 2007, 40, 1320-1326;
c) L.-H. Xia, Chin. J. New Drug. 2007, 16, 979-981; d) E. Sebokova, A.
D. Christ, M. Boehringer, J. Mizrahi, J. Curr. Top. Med. Chem. 2007, 7,
547-555; e) D. Drucker, C. Easley, P. Kirkpatrick, Nat. Rev. Drug Disc.
Hughes,ChemCatChem2012, 4, 1071; For recent reviews on this
topic, see: b) A. Basso, S.Serban, Mol. Cancer 2019, 479, 110607;
For an overview of fluorine containing drugs including sitagliptin,
see: c) J. Wang, M. Sanchez-Rosello, J. L. Acena, C. del Pozo, A.
3
This article is protected by copyright. All rights reserved.