Page 5 of 10
Journal of the American Chemical Society
7.
a) Shichida, Y.; Matsuyama, T. Philos. Evolution of Opsins and
W. S.; Liang, Y.; Dublin, S. N.; Dong, J. ; Snyder, J. P. ; Pingali,
S. V.; Thiyagarajan, P.; Lynn, D. G. Facial Symmetry in Protein
Self-Assembly. J. Am. Chem. Soc. 2008, 130, 9829–9835; f)
Kroiss, D.; Ashkenasy, G.; Braunschweig, A. B.; Tuttle, T.; Ulijn,
R. V. Catalyst: Can Systems Chemistry Unravel the Mysteries of
the Chemical Origins of Life? Chem, 2019, 5, 1917-1923.
13. a) Wei, G.; Su, Z.; Reynolds, N. P.; Arosio, P.; Hamley, I. W.;
Gazit, E.; Mezzenga, R. Self-Assembling Peptide and Protein
Amyloids: from Structure to Tailored Function in Nanotechnology.
Chem. Soc. Rev. 2017, 46, 4661-4708; b) Branco, M. C.; Sigano,
D. M.; Schneider, J. P. Materials from Peptide Assembly: towards
the Treatment of Cancer and Transmittable disease. Curr. Opin.
Chem. Biol. 2011, 15, 427–434;
Phototransduction. Trans. R. Soc. B. 2009, 364, 2881-2895; b)
Neri, S.; Garcia Martin, S.; Pezzato, C.; Prins, L. J.
Photoswitchable Catalysis by a Nanozyme Mediated by a Light-
Sensitive Cofactor. J. Am. Chem. Soc. 2017, 139, 1794–1797.
Leech, A. P.; James, R.; Coggins, J. R.; Kleanthous. C.
Mutagenesis of Active Site Residues in type I Dehydroquinase
from Escherichia Coli. Stalled Catalysis in a Histidine to Alanine
Mutant. J. Biol. Chem. 1995, 270, 25827–25836.
a) Greenwald, J.; Riek, R. On the Possible Amyloid Origin of
Protein Folds. J. Mol. Biol. 2012, 421, 417-426; b) Greenwald, J.;
Friedmann, M. P.; Riek, R. Amyloid Aggregates Arise from
Amino Acid Condensations under Prebiotic Conditions. Angew.
Chem. Int. Ed. 2016, 55, 11609−11613; c) Carny, O.; Gazit, E. A
Model for the Role of Short Self-Assembled Peptides in the Very
Early Stages of the Origin of Life. FASEB J. 2005, 19, 1051-1055;
d) Ashkenasy, G.; Hermans, T. M.; Otto, S.; Taylor, A. F. Systems
Chemistry. Chem. Soc. Rev. 2017, 46, 2543-2554.
1
2
3
4
5
6
7
8
8.
9.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
c) Kapil, N.; Singh, A.; Singh, M.; Das, D. Efficient MoS2
Exfoliation by Cross-β-Amyloid Nanotubes for Multistimuli-
Responsive and Biodegradable Aqueous Dispersions. Angew.
Chem. Int. Ed. 2016, 55, 7772-7776; d) Makam, P.; Yamijala, S.;
Tao, K. ; Shimon, L.; Eisenberg, D.; Sawaya, M.; Wong, B.; Gazit,
E. Nonproteinaceous Hydrolase Comprised of a Phenylalanine
Metallo-Supramolecular Amyloid-like Structure. Nat. Catal. 2019,
2, 977–985; e) Singh, A.; Kapil, N.; Yenuganti, M.; Das, D.
Exfoliated Sheets of MoS2 Trigger Formation of Aqueous Gels
with Acute NIR Light Responsiveness. Chem. Commun. 2016, 52,
14043-14046 f) Knowles, T. P. J.; Mezzenga, R. Amyloid Fibrils
as Building Blocks for Natural and Artificial Functional Materials.
Adv. Matter. 2016, 28, 6546-6561.
10. Friedmann,
M.
P.; Torbeev,
V.; Zelenay,
V.; Sobol,
A.; Greenwald, J.; Riek, R. Towards Prebiotic Catalytic Amyloids
Using High Throughput Screening. PLoS One 2015, 10,
e0143948;
11. a) Rufo, C. M.; Moroz, Y. S.; Moroz, O. V.; Stöhr, J.; Smith, T.
A.; Hu, X.; DeGrado, W. F.; Korendovych, I. V. Short Peptides
Self-Assemble to Produce Catalytic Amyloids. Nat. Chem. 2014,
6, 303-309; b) Rubinov, B.; Wagner, N.; Rapaport, H.; Ashkenasy,
G. Self –Replicating Amphiphilic Beta- Sheet Peptides. Angew.
Chem., Int. Ed. 2009, 48, 6683−6686; c) Zhang, C.; Xue, X.; Luo,
Q.; Li, Y.; Yang, K.; Zhuang, X.; Jiang, Y.; Zhang, J.; Liu, J.; Zou,
G.; Liang, X. J. Self-Assembled Peptide Nanofibers Designed as
Biological Enzymes for Catalyzing Ester Hydrolysis. ACS Nano
2014, 8, 11715−23; d) Guler, M. O.; Stupp, S. I. A Self-Assembled
Nanofiber Catalyst for Ester Hydrolysis. J. Am. Chem. Soc. 2007,
129, 12082-12083; e) Zhang, C.; Shafi, R.; Lampel, A.;
MacPherson, D.; Pappas, C.; Narang, V.; Wang, T.; Madarelli, C.;
Ulijn, R. V. Switchable Hydrolase Based on Reversible Formation
of Supramolecular Catalytic Site Using a Self-Assembling Peptide.
Angew. Chem. Int. Ed. 2017, 56, 14511- 14515; f) Gao, Y.; Zhao,
F.; Wang, Q.; Zhang, Y.; Xu, B. Small Peptide Nanofibers as the
Matrices of Molecular Hydrogels for Mimicking Enzymes and
Enhancing the Activity of Enzymes. Chem. Soc.
Rev. 2010, 39, 3425– 3433; g) Frederix, P. W. J. M.; Scott, G. G.;
Abul-Haija, Y. M.; Kalafatovic, D.; Pappas, C. G.; Javid, N.; Hunt,
N. T.; Ulijn, R. V.; Tuttle, T. Exploring the Sequence Space for
(Tri-)Peptide Self-Assembly to Design and Discover New
Hydrogels. Nat. Chem. 2015, 7, 30-37; h) Reja, A.; Afrose, S. P.;
Das, D. Aldolase Cascade Facilitated by Self‐Assembled
Nanotubes from Short Peptide Amphiphiles. Angew. Chem. Int. Ed.
S.; McIntosh, B. A.; Neill-Hall, D.; Hatimy, A. A.; Sweet, S. M.;
Bagley, M. C.; Serpell, L. C. The amyloid architecture provides a
scaffold for enzyme-like catalysts. Nanoscale 2017, 9, 10773–
10783
12. a) Tena-Solsona, M.; Nanda, J.; Diaz-Oltra, S.; Chotera, A.;
Ashkenasy, G.; Escuder, B. Emergent Catalytic Behaviour of Self-
Assembled Low Molecular Weight Peptide-Based Aggregates and
Hydrogels. Chem. Eur. J. 2016, 22, 6687−6694; b) Singh, N.;
Kumar, M.; Miravet, J. F.; Ulijn, R. V.; Escuder, B. Peptide-Based
Molecular Hydrogels as Supramolecular Protein Mimics. Chem.
Eur. J. 2017, 23, 981−993; c) Schneider, J. P.; Pochan, D. J.; Ozbas,
B.; Rajagopal, K.; Pakstis, L.; Kretsinger, J. Responsive Hydrogels
from the Intramolecular Folding and Self-Assembly of a designed
Peptide. J. Am. Chem. Soc. 2002, 124, 15030-15037; d) Omosun,
T. O.; Hsieh, M. C.; Childers, W. S.; Das, D.; Mehta, A. K.;
Anthony, N. R.; Pan, T.; Grover, M. A.; Berland, K. M.; Lynn, D.
G. Catalytic Diversity in Self-Propagating Peptide Assemblies.
Nat. Chem. 2017, 9, 805-809; e) Mehta, A.K.; Lu, K. ; Childers,
14. a) Elkins, M. R.; Wang, T.; Nick, M.; Jo, H.; Lemmin, T.; Prusiner,
S. B.; DeGrado, W. F.; Stoehr, J.; Hong, M. Structural
Polymorphism of Alzheimer's β-Amyloid Fibrils as Controlled by
an E22 Switch: A Solid-State NMR Study. J. Am. Chem Soc. 2016,
138, 9840-9852; b) Li, S.; Sidorov, A. N.; Mehta, A. K.; Bisignano,
A. J.; Das, D.; Childers, W. S.; Schuler, E.; Jiang, Z.; Orlando, T.
M.; Berland, K.; Lynn, D. G. Neurofibrillar Tangle Surrogates:
Histone H1 Binding to Patterned Phosphotyrosine Peptide
Naonotubes. Biochemistry 2014, 53, 4225-4227.
15. a) Kapil, N.; Singh, A.; Das, D. Cross‐β Amyloid Nanohybrids
Loaded With Cytochrome C Exhibit Superactivity in Organic
Solvents. Angew. Chem. Int. Ed. 2015, 54, 6492-6495; b) Childers,
W. S.; Mehta, A. K.; Lu, K.; Lynn, D. G. Templating Molecular
Arrays in Amyloid’s Cross-β Grooves. J. Am. Chem. Soc. 2009,
131, 10165-10172;
16. a) Goodwin, J.T.; Lynn, D.G. Template Directed Synthesis: Use of
a Reversible Reaction. J. Am. Chem. Soc. 1992, 114, 9197-9198;
b) Corbett, P. T.; Leclaire, J.; Vial, L.; West, K. R.; Wietor, J.
L.; Sanders, J. K. M.; Otto, S. Dynamic Combinatorial
Chemistry. Chem. Rev. 2006, 106, 3652– 3711.
17. a) Lassila, J. K.; Baker, D; Herschlag. D. Origins of Catalysis by
Computationally Designed Retroaldolase Enzymes. Proc. Natl.
Acad. Sci. USA 2010, 107, 4937–4942; b) Obexer, R.; Godina,
A.; Garrabou, X.; Mittl, P. R. E.; Baker, D.; Griffiths, A.
D.; Hilvert, D. Emergence of a catalytic tetrad during evolution of
a highly active artificial aldolase. Nat. Chem. 2016, 9, 50– 56; c)
Jiang, L.; Althoff, E. A.; Clemente, F. R.; Doyle, L.; Röthlisberger,
D.; Zanghellini, A.; Gallaher, J. L.; Betker, J. L.; Tanaka,
F.; Barbas, C. F.; Hilvert, D.; Houk, K. N.; Stoddard, B. L.; Baker,
D. De Novo Computational Design of Retro-Aldol Enzymes.
Science 2008, 319, 1387-1391.
18. Cardamone, M. N.; Puri, K. Spectrofluorimetric Assessment of
the Surface Hydrophobicity of Proteins. Biochem J. 1992, 282,
589–593
19. Nagakura, S. ; Gouterman, M. Effect of Hydrogen Bonding on the
Near Ultraviolet Absorption of Naphthol J. Chem. Phys. 1957, 26,
881–886.
20. Verpoorte, J. A.; Mehta, S.; Edsall, J. T. Esterase activities of
human carbonic anhydrases B and C. J. Biol. Chem. 1967, 242,
4221–4229.
Table of Contents
ACS Paragon Plus Environment